A COMPILATION OF DATA ON THE TOXICITY OF CHEMICALS TO SPECIES IN AUSTRALASIA. PART 4: METALS (2000-2009)

K. Langdon¹, M St J Warne^{2*}, R I M Sunderam³

¹ School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia.

² Centre for Environmental Contaminants Research, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, SA 5064, Australia [current address: Water Quality and Aquatic Ecosystem Health Section, Department of Environment and Resource Management, Brisbane, QLD 4102, Australia]*

³ Ecotoxicology and Environmental Contaminants Section, Department of Environment, Climate Change and Water, Lidcombe, NSW 2141, Australia.

Manuscript received, 10/12/2009; accepted, 4/3/2010.

ABSTRACT

This is the fourth paper in a series that presents data in the Australasian ecotoxicology database. The paper presents all the published and unpublished ecotoxicology data for metals that had been generated in Australasia since the initial publication of metal ecotoxicology data in 2002. The literature search identified 58 articles that contained relevant ecotoxicology data. In total, 1939 new metal ecotoxicology data were added to the database thus increasing the amount of such data by approximately 80%. A total of 521, 484, 185 and 749 data were added for freshwater, marine/estuarine, sediment and terrestrial environmental compartments, respectively. The additional toxicity data will substantially increase the relevance of future environmental quality guidelines or hazard and risk assessments to Australasian ecosystems.

Key words: metal; toxicity; database; Australasian species.

INTRODUCTION

Metals naturally occur in and are ubiquitous in the environment. From an ecotoxicological perspective metals can be divided into essential and non-essential metals. Essential metals are those that are required by at least some organisms for various life processes including enzymatic and metabolic reactions (Lehninger 1982). Essential metals include antimony (Sb), arsenic (As), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), tin (Sn), titanium (Ti), vanadium (V) and zinc (Zn) (Luoma and Rainbow 2008). Non-essential metals have no known biological function and these generally include cadmium (Cd), gold (Au), lead (Pb), mercury (Hg), palladium (Pd), platinum (Pt), silver (Ag) and uranium (U). The concentration response relationships of essential and non-essential metals are quite different, having 'U-shaped' and sigmoidal relationships, respectively. Toxic effects can be caused by essential metals concentrations being too low and causing deficiency-type effects and then being too high and causing toxicity. All metals, whether essential or non-essential to an organism, become toxic beyond certain threshold concentrations (Depledge et al. 1994). The issue of essentiality has not been properly addressed in ecotoxicology and in the derivation of environmental quality guidelines.

As metals occur naturally, they have natural biogeochemical cycles which involve the mobilisation of metals from rocks into soil and thence transport into waterways, biota and the atmosphere. This transport can be local, regional or global in nature. The dawn of the Industrial Revolution brought about an unprecedented increase in the use of metals in human health and welfare, the industrial economy and maintenance of national security (Nriagu 1994). Each year, large quantities of metal wastes are discharged into the environment so that

* Author for correspondence, email: michael.warne@derm.qld.gov.au

for Pb, Cd, V and Zn, the human inputs are now far greater than the global natural sources by 28-, 6-, 3- and 8-fold, respectively (Nriagu 1990; Amiard and Amiard-Triquet 1993).

Major sources of anthropogenic metallic inputs into aquatic environments are domestic and industrial waste waters, sewage discharges, urban run-off and atmospheric fallout (Nriagu 1990). Furthermore, metal pollution in agroecosystems, primarily from the application of fertilisers and/or biosolids (i.e., treated sewage sludge) and increasingly from the application of industrial residues or by-products is of increasing environmental concern (Tiller et al. 2000). New guidelines for metal contaminants in biosolids, mineral fertilisers and industrial residues have recently been developed in Australia (Warne et al. 2007; Sorvari et al. 2009) with the aim of managing the potential environmental risks associated with metals in these materials.

Nearly a quarter of a century ago Hart (1986) reviewed the research priorities for water quality management and called for the establishment of a national ecotoxicology database. In 1996, work on the Australasian Ecotoxicology Database (AED) commenced. Its development was facilitated by the derivation of the 2000 ANZECC and ARMCANZ water quality guidelines for toxicants (ANZECC and ARMCANZ 2000). The aim of establishing the database was to have all toxicity data for native and introduced species that had been tested under Australasian conditions in one easily accessible location (see Warne et al. 1998). It was felt that this would facilitate the use of Australasian data in decision-making processes such as ecological hazard and risk assessments and could be used to guide research by indicating those chemicals or species for which more toxicity data are needed.

The intent was that the AED would be available in two formats - publications in the Australasian Journal of Ecotoxicology and an electronic form (i.e., an ACCESS database). Toxicity data for pesticides, organic chemicals (excluding pesticides) and metals have been collated into the AED and published (Warne et al. 1998; Warne and Westbury 1999; and Markich et al. 2002, respectively). The current paper presents additional toxicity data for metals, including metalloids (As, Se) that have been generated and/or published since the previous metal AED publication (Markich et al. 2002). Having the database available electronically has never been achieved due to a lack of funds. However, this has been overcome by the current project. The whole AED will shortly be available on the CSIRO web-site (to locate it go to the CSIRO website http://www.csiro.au/ and then conduct a search for the Australasian Ecotoxicology Database).

The aims on this project were to: capture and synthesise the breadth of research undertaken in the field since the previous version of the AED; provide metal toxicity data for the forthcoming revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC and ARMCANZ 2000); support life cycle assessment for metal and metal products in Australia; and ensure that the best-available science is publicly available to support transparent and scientifically rigorous policy development.

METHODS

An extensive literature review was conducted using Science Direct (http://www.sciencedirect.com/) and the ISI Web of Knowledge (http://apps.isiknowledge.com/ UA_GeneralSearch_input.do?product=UA&search_ m o d e = G e n e r a l S e a r c h & S I D = 4 A l p 8 m @ 3 @HaleolIILo&preferencesSaved=). In addition, scientists known to be conducting metal ecotoxicology research were directly contacted and asked to supply any published or unpublished data. The literature search identified approximately 300 articles which met the search key words (metal, toxicity, Australasia, Australia, New Zealand). This number was reduced to 58 articles which actually contained relevant ecotoxicology data. All journal articles as well as several project reports that contained metal toxicity data (including the metalloids As and Se) for native and introduced species tested under Australasian conditions that had been published since the previous publication of the AED for metals (Markich et al. 2002) or that were not included in the previous paper were collected.

Individual datum points were extracted from each of the papers/reports and entered into the database with a unique identifier number. Additional information that was entered along with each datum point included, the chemical being tested, the exposure regime (e.g., static, semi-static or flow-through), the test duration, the experimental conditions, the test species, the test species' characteristics (e.g., age, sex or length), the biological endpoint (e.g., lethality, reproductive impairment), the measure of toxicity (e.g., LC50, EC10, NOEC) and information on the statistics used. Toxicity data that were derived for mixtures of metals were not included in the database however they will be discussed in this report.

Complex mixtures, for example, mine wastes, have not been included in the update of the database. Bioaccumulation data were also not included.

In the majority of studies, the toxicity data from each of the papers/reports were extracted and entered into the database in the form reported by the authors. In some studies not all possible measures of toxicity were calculated from the available data and therefore such data were analysed and the resulting toxicity values (e.g., NOEC, LOEC, EC50 or LC50 data) included in the AED. In some cases, the toxicity values were estimated from graphs provided in the publications/ reports. Where this has been done it has been clearly recorded in the database in the section on how the toxicity data were calculated.

All the toxicity data were entered into the AED in the exact chemical form used (e.g., $CuSO_4.5H_20$) but have been presented in this paper as the individual metal (e.g., Cu). The valency state of the metals is presented when this information was presented in the articles/reports.

The quality of every toxicity datum point was determined and was entered into the database to indicate the robustness of the methods used to generate the data and therefore the reliability of the datum. The quality of each datum was determined using a marking scheme that varied slightly for aquatic (freshwater - having a salinity $\leq 2.5\%$ and marine/ estuarine – salinity > 2.5%), sediment and terrestrial data (see Tables 1, 2 and 3, respectively). The total possible score that could be obtained for a datum point depended on the test medium used and organism type (e.g., the total possible score for aquatic organisms ranged from 88 to 100, Table 1), therefore, the quality was expressed as a percentage of the total possible score for that particular combination of test medium and organism type. Data points with quality scores of $\leq 50\%$ were classed as unacceptable (U), 51 to 79% as acceptable (A) and $\geq 80\%$ as of high (H) quality. Only data classed as H or A are deemed suitable for deriving trigger values (TVs) for toxicants in aquatic ecosystems in Australia and New Zealand (ANZECC and ARMCANZ 2000) and to derive proposed Australian contaminant guidelines for biosolids (Warne et al. 2007; Heemsbergen et al. 2009a) and ecological investigation levels for contaminated sites (Warne et al. 2009). When conducting hazard or ecological risk assessments similar scrutiny of the quality of the toxicity data is also required, but which quality classifications are suitable for a particular purpose will vary with each study.

RESULTS AND DISCUSSION

Summary statistics

All the toxicity data points that were entered into the AED as part of the current project are presented in Appendices A, B, C and D for freshwater, marine/estuarine, sediment and terrestrial data, respectively. A summary of all the data points entered in the AED for each of the environmental compartments (i.e., freshwater, marine/estuarine, sediment and terrestrial) as well as the total numbers are provided in Table 4. Overall, there were 1939 individual data points added to the AED that were obtained from 58 studies. In total,

Langdon et al

Table 1. Marking scheme used to derive quality scores for aquatic toxicity data (freshwater and marine/estuarine) (from Hobbs et al. 2005).

Ouest	ion	Mark
1	Was the duration of the exposure stated (e.g. $48 \text{ or } 96 \text{ hours}$)?	10 or 0
2.	Was the biological endpoint (e.g., immobilisation or population growth) stated and defined (10 marks)? Award 5 marks if the biological endpoint is only stated	10, 5 or 0
3.	Was the biological effect stated (e.g., LC or NOEC)?	5 or 0
4.	Was the biological effect quantified (e.g., 50% effect, 25% effect)?	5 or 0
	The effect for NOEC and LOEC data must be quantified.	
5.	Were appropriate controls (e.g., a no-toxicant control and/or solvent control) used?	5 or 0
6.	Was each control and chemical concentration at least duplicated?	5 or 0
7.	Were test acceptability criteria stated (e.g., mortality in controls must not exceed a certain percentage)	5, 2 or 0
	OR	
	were test acceptability criteria implied (e.g., test method used (USEPA, OECD, ASTM etc) uses validation criteria) (award 2 marks). Note: Invalid data must not be included in the database.	
8.	Were the characteristics of the test organism (e.g., length, mass, age) stated?	5 or 0
9.	Was the type of test medium used stated?	5 or 0
10.	Was the type of exposure (e.g., static, flow through) stated?	4 or 0
11.	Were the chemical concentrations measured?	4 or 0
12.	Were parallel reference toxicant toxicity tests conducted?	4 or 0
13.	Was there a concentration-response relationship either observable or stated?	4 or 0
14.	Was an appropriate statistical method or model used to determine the toxicity?	4 or 0
15.	For NOEC/LOEC/MDEC/MATC data was the significance level 0.05 or less?	4 or 0
	OR	
	For LC/EC/BEC data was an estimate of variability provided?	
16.	For metals tested in freshwater (FW), were the following parameters measured?	
	(i) pH,	3, 1 or 0
	(ii) hardness,	3, 1 or 0
	(iii) alkalinity and	3, 1 or 0
	(iv) organic carbon concentration	3, 1 or 0
	Award 3 marks for each variable that was measured during the test and values stated.	
	Award I mark for each parameter if it is measured but not stated or if they are measured and values are stated for the dilution water only.	
		2 1 0
	For all other chemicals, was the pH measured and values stated?	3, 1 or 0
1.5	Award 1 mark 11 it is measured but not stated or 11 the pH of the dilution water only is measured and stated.	2
17.	For marine and estuarine water (MEw), was the salinity/conductivity measured and stated?	3 or 0
18.	during the test?	3 or 0
19.	Was the temperature measured and stated (3 marks)? Award 1 mark if only the temperature settings of the room or chamber are stated.	3, 1 or 0
20.	Were analytical reagent grade chemicals or the highest possible purity chemicals used for the experiment?	3 or 0
	Total score	
	Total possible score for the various types of data and chemicals:	
	FW/metal/non-plant = 100. FW/non-metal/non-plant = 91. FW/metal/plant = 97.	
	FW/non-metal/plant = 88. MEW/non-plant = 91. MEW/plant = 88)	
	Quality score ([Total score / Total possible score] * 100)	
	Quality class (H > 80% 51-70% A U < 50%)	

there were new data for 13 metals and for 87 test species that belonged to 14 divisions/phyla. The greatest number of data points added was for terrestrial toxicity where 749 data points were added to the database representing 31 different test species. The number of data points entered for freshwater and marine/estuarine was similar with 521 and 484 data points added, respectively. However, in terms of the total number of species tested within these two environmental compartments, there was over double the number of species tested in marine/ estuarine systems than in freshwater and data for nearly 50% more divisions/phyla. There was a total of 185 sediment toxicity data points added into the AED. The AED previously did not contain any sediment toxicity data.

Overall, the quality of the data, as indicated by the quality score, was highly variable with values ranging from 37% for a terrestrial data point to 96% for a freshwater data point.

Langdon et al

Table 2. Marking scheme used to derive quality scores for sediment toxicity data.

Quest	ion	Mark
1.	Was the duration of the exposure stated (e.g., 48 or 96 h)?	10 or 0
2.	Was the biological endpoint (e.g., immobilization or population growth) stated and defined (10 marks)? Award 5 marks if the biological endpoint is only stated	10, 5 or 0
3.	Was the biological effect stated (e.g., LC or NOEC)?	5 or 0
4.	Was the biological effect quantified (e.g., 50% effect, 25% effect)? The effect for NOEC and LOEC data must be quantified.	5 or 0
5.	Were appropriate controls (e.g., a no-toxicant control and/or solvent control) used?	5 or 0
6.	Was each control and contaminant concentration at least duplicated?	5 or 0
7.	Were test acceptability criteria stated (e.g., mortality in controls must not exceed a certain percentage) (5 marks)?	5, 2 or 0
	OR	
	Were test acceptability criteria implied (e.g., test method used [USEPA, OECD, ASTM etc]) (award 2 marks). Note: Invalid data must not be included in the database	
8.	Were the characteristics of the test organism (e.g., length, mass, age) stated?	5 or 0
9.	Was the type of test medium used stated?	5 or 0
10.	Was the type of exposure (e.g., static, flow through) stated?	4 or 0
11.	Were the contaminant concentrations measured?	4 or 0
12.	Were parallel reference toxicant toxicity tests conducted?	4 or 0
13.	Was there a concentration–response relationship either observable or stated	4 or 0
14.	Was an appropriate statistical method or model used to determine the toxicity?	4 or 0
15.	OR	4 or 0
	If NOEC/LOEC data, was the significance level 0.05 or less?	
16.	Were the following parameters measured and stated? (3 marks if measured and stated, 1 if just measured)	
	(i) pH	3, 1 or 0
	(ii) Particulate organic carbon (POC)	3, 1 or 0
	(iii) Particle size (e.g., <63 μm or silt/clay)	3, 1 or 0
	(iv) Acid-volatile sulfide (AVS) and 1-M HCl extractable metals	3, 1 or 0
	(v) Dissolved contaminants (e.g., metals) in porewater or overlying water	3, 1 or 0
	(vi) Dissolved ammonia and sulfide in porewater or overlying water	3, 1 or 0
17.	Was the temperature measured and stated?	3 or 0
18.	Was the grade or purity of the test contaminant stated?	3 or 0
19.	For marine and estuarine water (MEW), was the salinity/conductivity measured and stated?	3 or 0
20.	For freshwater sediment tests, was the alkalinity, hardness, or concentrations of Ca and Mg measured in the overlying water?	3 or 0
	Were known interacting elements on bioavailability measured (e.g., CI for Cd)?	•
21.	For sediments spiked with metal salts: were the equilibration conditions adequate?	3 or 0
	Total score Total possible score for the various types of data and contaminants = 112 Quality score ([Total score / 112] * 100) Quality class ($H \ge 80\%$, 51–79% A, $U \le 50\%$)	

Although the range of quality score values was quite broad, the median quality scores did not vary markedly across the four environmental compartments. Data points which have quality scores < 50% are deemed unacceptable for deriving TVs in Australia and New Zealand (ANZECC and ARMCANZ 2000), therefore these data points would need to be removed from data sets prior to deriving TVs.

A summary of the composition of all the data points in the AED is presented in Table 5. It provides the total number of metals, species, divisions/phyla for which unique data are available, the number of studies from which data were sourced and the number of data points collated. In addition,

it provides in parentheses the values for each parameter that were added in the current project. Thus, while the data in Table 4 indicate that freshwater toxicity data were entered for nine metals, only one of these was new to the AED (i.e., indicated by (1), Table 5). As sediment data had not previously been entered into the database, all the data were classed as new data, i.e., 13 new test species from four new divisions/ phyla. As there is some overlap between the test species used in sediment tests with those used in marine/estuarine tests, each new species was only counted once to determine the total number of new species added to the database which was 41. Overall, the database currently has a total of 4346

Langdon et al

Table 3. Marking scheme used to derive quality scores for terrestrial toxicity data (from Heemsbergen et al. 2009a).

Quest	tion	Mark
1.	Was the duration of the exposure stated (e.g., 48 or 96 h)?	10 or 0
2.	Was the biological endpoint (e.g., immobilization or population growth) stated and defined (10 marks)? Award 5 marks if the biological endpoint is only stated	10, 5 or 0
3.	Was the biological effect stated (e.g., LC or NOEC)?	5 or 0
4.	Was the biological effect quantified (e.g., 50% effect, 25% effect)? The effect for NOEC and LOEC data must be quantified.	5 or 0
5.	Were appropriate controls (e.g., a no-toxicant control and/or solvent control) used?	5 or 0
6.	Was each control and contaminant concentration at least duplicated?	5 or 0
7.	Were test acceptability criteria stated (e.g., mortality in controls must not exceed a certain percentage) (5 marks)?	5, 2 or 0
	OR	
	Were test acceptability criteria implied (e.g., test method used [USEPA, OECD, ASTM etc]) (award 2 marks). Note: Invalid data must not be included in the database	
8.	Were the characteristics of the test organism (e.g., length, mass, age) stated?	5 or 0
9.	Was the type of test medium used stated?	5 or 0
10.	Were the contaminant concentrations measured?	4 or 0
11.	Were parallel reference toxicant toxicity tests conducted?	4 or 0
12.	Was there a concentration-response relationship either observable or stated	4 or 0
13.	Was an appropriate statistical method or model used to determine the toxicity?	4 or 0
14.	For NOEC/LOEC data was the significance level 0.05 or less?	4 or 0
	OR	
	For LC/EC/BEC data was an estimate of variability provided?	
15.	Were the following parameters measured and stated? (3 marks if measured and stated, 1 if just measured)	
	(i) pH,	3, 1 or 0
	(ii) OM or OC content	3, 1 or 0
	(iii) Clay content	3, 1 or 0
	(iv) CEC	3, 1 or 0
16.	Was the temperature measured and stated?	3 or 0
17.	Was the grade or purity of the test contaminant stated?	3 or 0
18.	Were other cations and or major soil elements measured?	3 or 0
	OR	
	Were known interacting elements on bioavailability measured (e.g., Mo for Cu and Cl for Cd)?	
19.	For spiked soils with metal salts: Were the soils leached after spiking?	3 or 0
20.	Were the incubation conditions and duration stated?	3, 1 or 0
	Total score	
	Total possible score for the various types of data and contaminants: 102	
	Quality score ([Total score / 102] * 100)	
	Quality class (H ≥ 80%, 51–79% A, U ≤ 50%)	

Table 4. Summary of new metal toxicity data entered into the Australasian Ecotoxicology Database (AED) as presented in AppendicesA, B, C and D.

Traits of the	Е	nvironmental compartm	ent for which toxi	city data are in the AE	D
ecotoxicity data	Freshwater ^a	Marine/estuarine ^b	Sediment ^c	Terrestrial ^d	Total
Metals ^e	9	7	5	9	13
Species	17	38	13	31	87
Divisions/phyla	8	11	4	5	14
Studies	22	22	8	13	58
Data points	521	484	185	749	1939
Quality Score (%)	79	72	77	74	
[median (range)]	(64 – 96)	(39 – 85)	(44 – 82)	(37–91)	

^a raw toxicity data presented in Appendix A; ^b raw toxicity data presented in Appendix B; ^c raw toxicity data presented in Appendix C; ^d raw toxicity data presented in Appendix D; ^e metals that have multiple oxidation states (As, Se and Cr) were treated as one metal.

Table 5. Summary of all metal toxicity data in the Australasian Ecotoxicology Database (AED), as presented in Appendices A, B, C and D and Markich et al. (2002). Values in parentheses are the number of new (in addition to that already in the AED) metals, species, divisions/ phyla, and studies for which data were added to the AED in the current project and the totals.

	Freshwater	Marine/estuarine	Sediment	Soil	Total
Metals ^a	15(1)	15(0)	5 (5)	16(1)	22 (1)
Species	89 (4)	107 (19)	13 (13)	148 (17)	343 (41)
Divisions/phyla	12 (1)	13 (1)	4 (4)	5 (2)	19 (2)
Studies	94 (22)	96 (22)	8 (8)	77 (13)	263 (58)
Data points	1496 (521)	1120 (484)	185 (185)	1545 (749)	4346 (1939)

^a metals that have multiple oxidation states (As, Se and Cr) were treated as one metal.

data points for 22 metals that has been extracted from 263 studies. Data are currently available for 343 test species from 19 divisions/phyla.

Metals studied and test species diversity

It is important to assess how comprehensive the data are in the AED. Tables 6, 7, 8 and 9 summarise this information for freshwater, marine/estuarine, sediment and terrestrial compartments, respectively. These tables present for each metal, the number of test species that belong to various divisions and/or phyla for which toxicity data are present in the AED. The numbers shown in parentheses indicate the number of species that belong to various divisions and/or phyla and were added during the present study.

Freshwater data

Table 6 shows the 15 individual metals for which there are freshwater toxicity data available in the AED (metals with multiple oxidation states have been shown separately, but were considered to be one metal). The current update included data on 9 of the 15 metals and also added data for one new metal (iron). There were only five metals, Cd, Cu, Fe, Pb and U for which there were toxicity data for new test species. There was the inclusion of data for one new freshwater division/phylum - cyanobacteria, but these data were only for Cu. In addition, over half of the freshwater data points that were updated into the AED were for copper (290 data points shown in Appendix A). Following Cu, the metals with the highest numbers of data points were Zn (85 data), Cd (61 data) and U (55 data). This summary of freshwater data provided in Table 6 indicates the need to increase test species diversity for toxicity testing on freshwater Australasian organisms, as well as the need to conduct toxicity testing on a broader range of metals. Based on the data shown in Table 6 there are sufficient acute toxicity data currently available in the AED to derive freshwater TVs for As(III), As(V), Cd, Cr(VI), Cu, U and Zn*.

Marine/estuarine data

Marine/estuarine toxicity data are available in the AED for a total of 14 metals (Table 7) (metals with multiple oxidation states have been shown separately, but were considered to be one metal). In the current update additional data were added for 7 of these 14 metals (Table 4). Toxicity data were added for new test species for six metals (Cd, Cu, Fe, Pb, Ni and

Zn). The most diverse data set of these was for Cu where data on an additional 21 test species were added. The next most diverse was Zn where data for 15 new test species were added. This indicates that the toxicity of metals in the marine/ estuarine compartment is being assessed for a more diverse range of marine/estuarine organisms than in the freshwater compartment. Similar to the freshwater data, only one new division/phylum was added in the marine/estuarine data (ie Dinoflagellata) which was again only for Cu. The majority of marine/estuarine toxicity data points added to the AED was again for Cu (304 data points, Appendix B). This was followed by Zn (109 data), Pb (28 data) and Cd (24 data). This indicates that although toxicity testing is being conducted on a broad range of Australasian marine/estuarine test species, a more extensive range of metals needs to be assessed. Based on the data summarised in Table 7, there are sufficient acute toxicity data available in the AED to derive marine/estuarine TVs for Cd, Cr(VI), Cu, Pb, Hg, Ni and Zn*.

Sediment data

The inclusion of sediment toxicity data added an additional environmental compartment for which Australasian toxicity were available in the database. All of the sediment data added were for marine sediments therefore there was considerable overlap of the test species used for the sediment and marine/ estuarine data. Compared to the freshwater and marine/ estuarine data sets, the sediment data were only available for a limited number of metals (i.e., Cd, Cu, Pb, Ni and Zn) with a limited number of test species (i.e., 13) from a limited number of divisions/phyla (i.e., 4) indicating that a greater understanding of metal toxicity to organisms in this test medium is required (Table 8). The majority of sediment toxicity data was again for Cu (102 data points added, Appendix C), followed by Zn (54 data). Even though the sediment toxicity data set is small in comparison to that available for the other environmental compartments, there are adequate acute toxicity data available for Cu to derive TVs*.

Terrestrial data

Terrestrial toxicity data are now available in the AED for a total of 16 metals (metals with multiple oxidation states have been shown separately, but were considered to be one metal) (Table 9). As part of the current update, terrestrial data were added for one new metal, selenium - as Se(IV) and (VI). Toxicity data were also added for two new divisions/

* i.e., data from a minimum of five species that belong to at least four taxonomic groups (ANZECC and ARMCANZ 2000; Warne 2001).

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Australasian metal toxicity data – IV

Metal	Bact	eria	PIs	ants				Aniı	nals			
I	Bacteria	Cyano- bacteria	Chlorophyta (green algae)	Magnoliophyta (Angiosperms)	Cnidaria	Mollusca	Annelida	Chelicerata	Crustacea	Uniramia	Chordata (fish)	Chordata (amphibia)
	[4]	[1]	[6]	[8]	[2]	[7]	[1]	[1]	[21]	[7]	[27]	[1]
Aluminium	I	I							I	I	1	I
Arsenic (III)		I	3				1		3	3		
Arsenic (V)	I		3	2			1		4	3	2	I
Cadmium			2 (1)	3	2	4	1	-	12	3	12	
Chromium (VI)	2		2	1					٢	1	2	
Copper	2 (1)	1 (1)	8 (1)	4 (1)	2	5		1	11	5	17	1
Iron		I			I		I		1 (1)		I	I
Lanthanum				I			I			I	I	I
Lead	I			2	I		I		4 (1)	I	٢	I
Manganese							I		I	I	7	I
Mercury				3					2		4	
Nickel				2					3	I	2	l
Silver				2								
Thallium				2			I		I	I	I	I
Uranium			2	1 (1)	2	-			4		10	
Zinc			2	7	2	1	I	I	8	1	15	I

Langdon et al

phyla for terrestrial organisms, bacteria and Pteridophyta. In the case of the bacteria, two new functional measures of toxicity, substrate-induced respiration and substrateinduced nitrification, were added for Cu and Zn, and data for substrate-induced nitrification were added for Pb. The phylum Pteridophyta includes fern species, for which toxicity data for ten different species were added for Cd, Cr(VI), Cu, Pb, Ni and Zn. For the remaining divisions/phyla presented in Table 9, new species were added for Cd, Cu, Pb, Se(IV), Se(VI) and Zn. The vast majority of the terrestrial toxicity data is for species belonging to Magnoliophyta and Pteridophyta, indicating that there is a need to obtain toxicity data on a broader range of terrestrial phyla. In terms of the total number of data added for individual metals, similar to the other environmental compartments (freshwater, marine/estuarine and sediment), there were the most data added for Cu (267 data points added, Appendix D) followed in order of decreasing number of data by Zn (196 data), aluminium (Al) (164 data) and Pb (38 data). Overall, in the AED, there are currently sufficient acute data to derive TVs for As (V), Cd, Cr(VI), Cu, Pb and Zn for the terrestrial environmen*. However, this is complicated by the fact that many of the terrestrial toxicity data available were not determined in soil but instead in aqueous media (e.g., hydroponically grown)

Acute and chronic toxicity data

Essentially all the metal toxicity data in the AED is acute, based on the definition of acute in the Australian and New Zealand WQGs (ANZECC and ARMCANZ 2000), apart from the data for micro-organisms, particularly unicellular algae, which are predominantly chronic. There is also a reasonable amount of early-life stage toxicity data which have sometimes been classified as sub-chronic and sometimes as acute. In the forthcoming revision of the Australian and New Zealand WQGs the definitions of acute, sub-chronic and chronic will need examining.

Currently the Australian and New Zealand WQGs give preference to the use of chronic toxicity data to derive TVs (ANZECC and ARMCANZ 2000; Warne 2001). There was also a stated preference to use data for as many species as possible irrespective of where the species occur. The reasoning was that when TVs are derived using the statistically-based species sensitivity

Metal			μ	ants						Animal	S		
	Bacillariophyta (diatoms)	Dinoflagellata	Chlorophyta (green algae) 151	Phaeophyta (brown algae 171	Prymnesiophyta (golden-brown algae) [3]	Magnoliophyta (Angiosperms) [11]	Cnidaria	Mollusca	Annelida	Crustacea [33]	Bryozoa I 171	schinodermata [6]	Chordata (fish) [111
	[24]	[*]	[2]	1	[a] (andm	[+]	2	[,,]	٢,٦	[^ ^]	1	٢٧٦	[**]
Aluminium								-				1	
Arsenic (III)	1												
Arsenic (V)	1						I			I			
Cadmium	4		7			1	1 (1)	٢	I	18		7	7
Chromium (VI)	2		С	2	1			2		5		1	2
Copper	12 (1)	1(1)	9	1	3 (2)		7 (3)	13 (3)	6 (3)	22 (7)	2	5 (1)	4
Iron							I	2 (1)	I	1		1	I
Lead	1	I	I				3 (1)	2 (1)	1 (1)	3 (1)		2 (1)	7
Manganese												1	
Mercury			7			1	[1	б	4	2	1	З
Molybdenum										1			
Nickel	1						1 (1)			4 (1)		1	2
Selenium (IV)								1		3		1	
Selenium (VI)				I				I		1		1	
Silver								I				1	
Zinc	7		1	1			1 (1)	10 (4)	4 (2)	21 (7)	2	5 (1)	6

Langdon et al

distribution methods (e.g., BurrliOZ, Campbell et al. 2000), it is best to use as many data as possible. Recent work on the relative sensitivities of species originating from different geographical locations indicates that this policy may need reconsideration. In addition, recent research (Schroer et al. 2004; Maltby et al. 2005; Van den Brink et al. 2006;) has shown that TVs derived using acute toxicity data are protective of species in mesocosms and field-based exposure. For example, Van den Brink et al. (2006) found that for nine herbicides the lower 95% confidence interval and median confidence interval (50%) values based on acute toxicity data resulted in values that were protective of micro- and mesocosms experiencing long-term exposure and a short-term or pulse exposure, respectively.

Toxicity of mixtures of metals

There were two studies that determined the toxicity of metal mixtures to Australasian freshwater organisms, and none for the other environmental compartments. The two studies assessed the toxic interactions of metal mixtures to two freshwater crustaceans (Cooper et al. 2009) and to the freshwater macrophyte *Lemna aequinoctialis* (duckweed) (Charles et al. 2006).

Cooper et al. (2009) used acute and chronic bioassays to observe the effect of binary and ternary mixtures of Cu, Pd and Zn to Ceriodaphnia dubia and Daphnia carinata. Interactions of the metal combinations mainly resulted in toxicity that conformed with concentration addition, however the toxicity was more than additive for three of the acute scenarios, i.e., both species exposed to Cu + Pb, *D. carinata* exposed to Cu + Znand C. dubia exposed to all three metals (Cooper et al. 2009). In comparison, Charles et al. (2006) found the joint toxicity of Cu and U was less than additive using an equitoxic mixture to L. aequinoctialis._

Effects of physicochemical properties of the environmental compartment on speciation, bioavailability and toxicity

Metal speciation and hence bioavailability and toxicity in all four environmental compartments may be strongly influenced by a variety of physicochemical parameters of the environmental compartment of

Table 8. The metals for which there are sediment Australasian ecotoxicology data and a summary of the total number of species belonging to different divisions and/or phyla in the Australasian Ecotoxicology Database (AED) for each metal. Values in parentheses are the number of new species for which toxicity data were added to the AED in the current project (abstracted from Appendix C). The values in square brackets are the total number of species within each division/phylum.

Metal	Plants		Animals	
	Bacillariophyta (diatoms)	Mollusca	Annelida	Crustacea
	[1]	[3]	[3]	[6]
Cadmium	—		—	1(1)
Copper	1 (1)	3 (3)	3 (3)	6 (6)
Lead				1(1)
Nickel			_	1(1)
Zinc	—	3 (3)	2 (2)	5 (5)

Table 9. The metals for which there are terrestrial (soil or hydroponic) Australasian ecotoxicology data and a summary of the total number of species belonging to different divisions and/or phyla in the Australasian Ecotoxicology Database (AED) for each metal. Values in parentheses are the number of new species for which toxicity data were added to the AED in the current project (abstracted from Appendix D). The values in square brackets are the total number of species within each division/phylum.

Metal	Bacteria	Plan	ts	Anii	mals
	Bacteria	Magnoliophyta (angiosperms)	Pteridophyta (ferns)	Annelida	Uniramia
	[2]	[129]	[10]	[3]	[4]
Aluminium	—	88	—	_	3
Arsenic(III)		1	—	—	3
Arsenic(V)	—	3		2	2
Cadmium		2	10 (10)	1	3 (1)
Cerium		4			
Chromium(VI)	—	4	10 (10)	1	1
Cobalt	—	1	—	—	
Copper	2 (2)	26 (8)	10 (10)	3 (1)	3
Gallium	—	1			
Lanthanum	—	3	—	—	—
Lead	1(1)	1	10 (10)	1	2 (1)
Manganese	—	38			
Nickel	—	2	10 (10)		
Scandium	—	1	—	—	
Selenium (IV)		1(1)			
Selenium(VI)	—	1 (1)	—	—	—
Thallium		2			
Zinc	2 (2)	22 (9)	10 (10)	2(1)	2 (1)

concern. For freshwater these include water hardness (primarily Ca and/or Mg concentration), alkalinity, pH, natural dissolved organic matter and redox potential (Stumm and Morgan 1996). The latter two parameters, in addition to salinity, are also relevant to marine and estuarine waters. In soils it has been known qualitatively, for quite some time, that bioavailability and toxicity are affected by a range of soil properties including soil pH, clay content, cation exchange capacity and organic carbon content (e.g., De Vries and Tiller 1978; Alloway 1995).

Although it was known that the above factors could affect bioavailability and toxicity of metals in freshwaters, there were only a few quantitative relationships between toxicity and water hardness that had been reported at the time of the release of the current Australian and New Zealand WQGs (ANZECC and ARMCANZ 2000). These quantitative relationships between metal toxicity and water hardness were developed for the Canadian and USA WQGs (Porter et al. 1995; USEPA 1995a, 1995b). There were insufficient data to derive water hardness – toxicity algorithms for Australian freshwater organisms (Markich et al. 2002) and therefore the North American algorithms were adopted into the Australian and New Zealand WQGs (ANZECC and ARMCANZ 2000; Markich et al. 2001). Markich and colleagues (Riethmuller

et al. 2000; Riethmuller et al. 2001; Markich et al. 2005; Markich et al. 2006) in a series of articles argued that the North American algorithms had confounded true water hardness with alkalinity and/or pH. They then developed true water hardness - toxicity algorithms for Cu for a suite of Australian freshwater species (including a bacterium, a crustacean, a green alga, a hydra, a macroalga and a fish) (Riethmuller et al. 2001; Markich et al. 2005; Markich et al. 2006) and found that there was no significant change in toxicity with true water hardness and therefore using the algorithms in the Australian and New Zealand WQGs would not provide adequate protection to such organisms. They recommended that the hardness correction not be used for Cu and that biotic ligand models (BLMs) be used. No recommendations were made regarding the validity of the North American hardness algorithms for the other metals. Biotic ligand models have now been developed for a number of metals including As (e.g., Chen et al. 2009), Cu (e.g., Ryan et al. 2009), Ag (e.g., Niyogi and Wood 2004), Zn (e.g., Clifford and McGreer 2009) and Ni (e.g., Kozlova et al. 2009). Research developing BLMs in Australia has been extremely limited with only one publication (De Schamphelaere et al. 2005) on the toxicity of Cu to the green alga Pseudokirchneriella subcapitata (previously Selenastrum capricornutum) addressing this issue. Despite there being BLMs for a number of metals and species, adoption by regulators has been limited. Only the BLM for Cu has been adopted to derive WQGs (USEPA 2007) while BLMs for chronic toxicity are accepted for use by the European Chemical Bureau as part of Existing Substances legislation (Ahlf et al. 2009).

By 2002, when the previous publication on metal toxicity for the AED was published, there were no algorithms between physicochemical properties of marine/estuarine water and toxicity and between soil and toxicity. This situation, to the authors' knowledge, has not changed for the marine/estuarine compartment, but a number of such algorithms have been developed for the soil compartment. These include algorithms that explain the variation in toxicity of As, Cu, Zn and Ni to micro-organisms, plants and invertebrates (Rooney et al. 2006; Smolders et al. 2003; Smolders et al. 2004; Oorts et al. 2006; Broos et al. 2007; Song et al. 2006; Warne et al. 2008a; Warne et al. 2008b) and the uptake of Cd, Cu, Pb and Zn by plants (Nan et al. 2002; Li et al. 2003; McLaughlin et al. 2006). The Australian National Biosolids Research Program (NBRP) developed a number of these algorithms that could model the toxicity of Cu and Zn to selected soil microbial functions (Broos et al. 2007) and to wheat (both laboratory- and field-based) (Warne et al. 2008a; Warne et al. 2008b) as well as the uptake of Cd by wheat (McLaughlin et al. 2006). Many of these algorithms have been incorporated into recent environmental regulation and ecological risk assessments that include the European Union ecological risk assessments of existing chemicals (e.g., EC 2008a; EC 2008b; LDA 2008), the Flemish soil quality guidelines (VLAREBO 2008), the proposed Australian guidelines for Cd, Cu and Zn in biosolids (Warne et al. 2007; Heemsbergen et al. 2009b) and the proposed Australian ecological investigation levels for contaminated sites (Heemsbergen et al. 2009a; Warne et al. 2009). To date, there are no similar algorithms for organic

chemicals in soils, although one would expect that soil pH and soil organic carbon content would be dominant soil physicochemical properties in such algorithms.

While the above algorithms have a sound mechanistic basis they are in fact empirical. Work has also been conducted on developing mechanistic models of toxicity in soils, in particular the free ion activity model (FIAM) and the terrestrial biotic ligand model (tBLM). The tBLM models have generally been found to provide better estimates of metal toxicity than the FIAM model (see following BLM references). Terrestrial BLMs have been developed for Cu and Ni to the collembolan Folsomia candida and the earthworm Eisenia fetida (Thakali et al. 2006b), Cu toxicity to the earthworm Aporrectodea caliginosa (Steenbergen et al. 2005), Zn toxicity to soil microbial nitrification (Mertens et al. 2007) and for Cu, Co and Ni to barley (Hordeum vulgare) (Thakali et al. 2006a; Lock et al. 2007; Antunes and Kraeger 2009). At this stage none of these has been adopted by regulators to derive SQGs, rather the empirical physicochemical property - toxicity algorithms are being adopted.

While sediment toxicity testing is a relatively new field, research has been conducted to establish if there are relationships between sediment physicochemical properties and toxicity. Unpublished work by Strom et al. (2008) has found that for Cu toxicity to an amphipod, *Melita plumulosa* and a bivalve, *Spisula trigonella*, the key factors are particle size (i.e., % silt) and the particulate organic carbon content (% POC).

A revision of the Australian and New Zealand WQGs commenced in July 2009 and there will need to be careful consideration of whether to incorporate the above developments into the methodology for deriving the WQGs.

Relative sensitivity of species from different geographical locations to toxicants

The current method for deriving WQGs in Australia and NZ (ANZECC and ARMCANZ 2000; Warne 2001) uses toxicity data irrespective of the geographical distribution of the test species. In doing this, it is assumed that species that occur in Australasia have the same sensitivity to toxicants as non-Australasian species. A number of publications have addressed this issue (e.g., Johnston et al. 1990; Sunderam et al. 1992; Davies et al. 1994; Mulhall 1997; Markich and Camilleri 1997; Rose et al. 1998; Hose and Van den Brink 2004; Westbury et al. 2004). However, the studies have always been too narrowly focussed in terms of chemicals and/or species to draw any general conclusions. In addition, the findings have often been contradictory with some finding differences and others finding no difference in sensitivity.

Similar concerns have also been raised elsewhere including Europe (Maltby et al. 2003), as well as in tropical (Leung et al. 2003; Kwok et al. 2007) and polar regions (Chapman and Riddle 2005; Chapman et al. 2006). All of these studies apart from Maltby et al. (2003), who compared North American and European species, found there were differences in the sensitivity of organisms from different geographical locations.

In particular, Kwok et al. (2007) compared the sensitivity of tropical and temperate marine species to a range of inorganic and organic chemicals and found that temperate data should be divided by an assessment factor of 10 in order to protect tropical species. Given the findings of Kwok et al. (2007) and Chapman et al. (2006), it is clear that organisms that occur in different geographical locations can have different sensitivities; this makes it pertinent to resolve the issue of whether Australasian and non-Australasian species have the same sensitivity to toxicants.

USING THE DATABASE

While every effort has been made to prevent errors in the database, it is possible that some will be present. It is therefore advisable that users refer to original data to ensure their correctness.

It would be appreciated that if authors of work cited in this report, or users of the database, find errors, they notify the principal author.

There is a considerable amount of toxicity testing being conducted but not being published that would be suitable for inclusion in the AED – for example consultancies determining site-specific trigger values or investigations of contaminated sites. We strongly encourage authors of such work to send a copy of the report to the principal author. Alternately, if there are any issues regarding confidentiality please only send the methods that are relevant to the toxicity testing and the results of the toxicity testing. Such data would go through the same process of data quality assessment as published data and would be included in the database and be attributed to the authors as unpublished data.

It is important that users realise that essentially all data presented are from laboratory studies and that there are difficulties in using such data to estimate effects in the field. This is due, amongst other reasons, to the effects of differences in chemical speciation, the presence of dissolved and suspended particulate matter, the selection of the test species and differences in chemical composition of test waters (Markich and Brown 1999) and the highly controlled experimental conditions and very simple test systems (e.g., testing one species in a test container containing only highly purified water) used in the laboratory.

FUTURE DEVELOPMENTS

An electronic version of the database will shortly be made available on the CSIRO web-site. This will be public domain and will permit any user to conduct searches for Australasian ecotoxicology data. The retrieved information will be exportable to either Word or Excel for further manipulation.

DISCLAIMER

This document has been prepared in good faith, exercising all due care and attention. No representational warranty, express or implied, is made as to the accuracy, completeness or fitness for purpose of this document in respect of any particular user's circumstances. Users of this document should satisfy themselves concerning its applicability to their use, and where necessary, refer to the original documents (where possible) cited in the database.

Langdon et al

APPENDIX A

SUMMARY OF THE METAL TOXICITY DATA FOR AUSTRALASIAN FRESHWATER BIOTA.

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Hd	Conduct-] ivity (µS/cm)	Hard- ness	Alkalinity (mg CaCO ₃ /L)	Organic Carbon (mg/L)	Endpoint	Duration	Toxic conc & measure of toxicity	Unit of toxic conc ^a	Conc type ^b	Quality score (%)	Reference
Aluminium	Chordata	purple spotted gudgeon (Mogurnda mogurnda)	<10 hrs old	semi-static	synthetic softwater	27	Ś					survival	(h)96	374 (LC50) (332-416) 547 (LC50) (524-570) (524-570) 283 (MDEC) 130 (MDEC)	μgAl/L	E	78	Camilleri et al. (2003)
Arsenic (III)	Chloro- phyta	green algae (<i>Chlorella</i> sp.)	exponential growth phase	static	synthetic softwater	27±1			80-90	54		growth rate	72(h)	25.2 (IC50) (23.3-29.2)	mg/L	Ε	76	Levy et al. (2005)
		green algae (Monoraphid- ium arcuatum)	exponential growth phase	static	synthetic softwater	27±1			06-0 8	54		growth rate	72(h)	3.75 (LOEC)	mg/L	Е	73	Levy et al. (2005)
		green algae (Monoraphid- ium arcuatum)	exponential growth phase	static	synthetic softwater	27±1			80-90	54		growth rate	72(h)	14.6 (IC50) (11.7-17.7)	mg/L	В	76	Levy et al. (2005)
Arsenic (V)	Chloro- phyta	green algae (<i>Chlorella</i> sp.)	exponential growth phase	static	synthetic softwater	27±1			80-90	54		growth rate	72(h)	1.93 (LOEC)	mg/L	В	73	Levy et al. (2005)
		green algae (<i>Chlorella</i> sp.)	exponential growth phase	static	synthetic softwater	27±1			06-08	54		growth rate	72(h)	25.4 (IC50) (25.2-25.7)	mg/L	Е	76	Levy et al. (2005)
		green algae (Monoraphid- ium arcuatum)	exponential growth phase	static	synthetic softwater	27±1			06-08	54		growth rate	72(h)	1.91 (LOEC) 0.081 (LOEC) 0.054 (LOEC)	mg/L	E	73	Levy et al. (2005)
		green algae (Monoraphid- ium arcuatum)	exponential growth phase	static	softwater	27±1			80-90	54		growth rate	72(h)	0.183 (IC50) (0.17-0.192) 0.254 (IC50) (0.253- 0.255) 4.53 (IC50) (4.02-4.83)	mg/L	ε	76	Levy et al. (2005)
Cadmium	Chloro- phyta	green algae (<i>Chlorella</i> sp.)	exponential growth phase	static	synthetic softwater	27	7.5					growth rate	48(h)	0.06 (NOEC) 0.19 (LOEC)	µmol/L	Е	70	Franklin et al. (2002)

	al.	al.	al.	al.	al.		al.	al.
Reference	Franklin et (2002)	Franklin et (2002)	Franklin et (2002)	Franklin et (2002)	Orchard et (2002)	Orchard et (2002)	Orchard et (2002)	Orchard et (2002)
Quality score (%)	70	75	75	75	82	8	87	82
Conc (type ^b	Ξ	E	E	Ε	н	E	Е	Е
Unit of toxic conc ^a	µmol/L	µmol/L	µmol/L	DL	µg/L	μg/L	hg/L	μg/L
Toxic conc & measure of toxicity	<0.06 (NOEC) (0.81-1.5) 0.06 (LOEC) (0.81-1.5)	0.85 (EC50) (0.81-1.5)	0.85 (EC50) (0.81-1.5)	1 (EC50) (1-1.1) 1 (EC50) (0.99-1.1)	0.5 (NOEC) 1.1 (LOEC) 1.2 (NOEC) 1.8 (LOEC)	9.6 (LC0) 11 (LC0) 0.8 (EC5) (0-1) 0.7 (EC5) (0.1-1.2) 5.9 (EC20) (0-7.5) 9 (EC20) >10.6 (EC20) >10 (EC20)	4.1 (EC50) (3-4.9)	1.7 (NOEC) 3.1 (LOEC) >10 (LC50)
Duration	72(h)	48(h)	72(h)	72(h)	20(h)	20(h)	5-6(d)	5-6(d)
Endpoint	growth rate	growth rate	growth rate	growth rate	feeding rate	feeding rate	feeding rate	feeding rate
Organic Carbon (mg/L)								
Alkalinity (mg CaCO ₃ /L)								
Hard- ness								
Conduct- ivity (µS/cm)								
Hq	7.5	7.5	7.5	7.5				
Temp (°C)	27	27	27	27	27±1	27±1	27±1	27±1
Test medium	softwater	synthetic softwater	synthetic softwater	synthetic softwater	filtered water Magela Creek, NT	filtered water Magela Creek, NT	filtered water Magela Creek, NT	filtered water Magela Creek, NT
Mode of exposure	static	static	static	static	semi-static	semi-static	semi-static	semi-static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	adults, 2nd reproductive instar	adults, 2nd reproductive instar	<6 days old	<6 days old
Species	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	cladoceran (Moinodaphnia macleayi)	cladoceran (Moinodaphnia macleayi)	cladoceran (<i>Moinodaphnia</i> macleayi)	cladoceran (<i>Moinodaphnia</i> <i>macleayi</i>)
Division/ phylum	Chloro- phyta				Crustacea			
Metal	Cadmium				Cadmium			

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

ference	an & gegoda 07)	an & gegoda 07)	an & gegoda 07)	an & gegoda 07)	rkich et al. 03)	rkich et al. 03)
lity Re re ()	7 Kh Nu (20	7 Kh Nu (20	7 Kh (20	7 Kh (20	9 Ma (200	9 Ma (20
nc Qua e ^b sco	~	~	i-	i-	76	52
of Cor type	NH	ž	Х. К.	Х <mark>Н</mark>	E	E
Unit e toxic conc	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L
Toxic conc & measure of toxicity	1692 (LC50) (1319-6570)	913 (LC50) (790-1099)	673 (LC50) (580-779)	494 (LC50) (396-577)	104 (BEC10) 106 (BEC10) 104 (BEC10) 115 (MDEC) 112 (MDEC) 111 (MDEC) 112 (EC50) (172-192) 176 (EC50) (167-185) 179 (EC50) (167-188)	98 (BEC10) 104 (MDEC) 174 (EC50) (164-184
Duration	24(h)	48(h)	72(h)	96(h)	48(h)	48(h)
Endpoint	mortality	mortality	mortality	mortality	duration valve opening	duration valve opening
Organic Carbon (mg/L)						
Alkalinity (mg CaCO ₃ /L)						
Hard- ness						
Conduct- ivity (µS/cm)	88±2	88±2	88±2	88±2		
Hq	8 ±0.5	8 ±0.5	8 ±0.5	8 ±0.5	6.5	6.8
Temp (°C)	21±1	21±1	21±1	21±1	20 ±0.1	20 ±0.1
Test medium	carbon filtered Melb mains water	carbon filtered Melb mains water	carbon filtered Melb mains water	carbon filtered Melb mains water	synthetic Hawkes- bury- Nepean River water	synthetic Hawkes- bury- Nepean River water
Mode of exposure	semi-static	semi-static	semi-static	semi-static	flow-through	flow-through
Life Stage	juveniles (28d)	juveniles (28d)	juveniles (28d)	juveniles (28d)	shell length 27-77mm	shell length 27-77mm
Division/ Species phylum	Crustacea yabby or crayfish (<i>Cherax</i> <i>destructor</i>)	Mollusca bivalve (<i>Hyridella</i> <i>depressa</i>)	bivalve (<i>Hyridella</i> depressa)			
Metal	Cadmium				Cadmium	

/ Reference	Markich et al. (2003)	Markich et al. (2003)	Markich et al. (2003)	Markich et al. (2003)	Rogers et al. (2005)	Rogers et al. (2005)
Quality score (%)	62	79	62	79	66	99
Conc type ^b	E	E	E	E	Ш	Ш
Unit of toxic conc ^a	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L
Toxic conc & measure of toxicity	108 (BEC10) 98 (BEC10) 101 (BEC10) 107 (MDEC) 104 (MDEC) 118 (MDEC) 118 (MDEC) 175 (EC50) (166-184) 181 (EC50) (172-190) 167 (EC50) 167 (EC50) 167 (EC50)	96 (BEC10) 102 (MDEC) 170 (EC50) (160-180)	106 (BEC10) 103 (BEC10) 98 (BEC10) 104 (MDEC) 110 (MDEC) 115 (MDEC)	184 (EC50) (174-194) 180 (EC50) (170-190) 169 (EC50) (160-178)	0.7 (EC50) (0.6-0.7)	2.5 (EC50) (2.3-2.6)
Duration	48(h)	48(h)	48(h)	48(h)	4(h)	4(h)
Endpoint	duration valve opening	duration valve opening	duration valve opening	duration valve opening	assimilation of 14C- glucose	assimilation of 14C- glucose
Organic Carbon (mg/L)						
Alkalinity (mg CaCO ₃ /L)						
Hard- ness					40	40
Conduct- ivity (µS/cm)						
Hq	7	7.3	7.5	7.5	5.5	6.5
Temp (°C)	20 ±0.1	20 ±0.1	20 ±0.1	20 ±0.1	30	30
Test medium	synthetic Hawkes- bury- Nepean River water	synthetic Hawkes- bury- Nepean River water	synthetic Hawkes- bury- Nepean River water	synthetic Hawkes- bury- Nepean River water	synthetic freshwater	synthetic freshwater
Mode of exposure	flow-through	flow-through	flow-through	flow-through	static	static
Life Stage	shell length 27-77mm	shell length 27-77mm	shell length 27-77mm	shell length 27-77mm	24-h old culture	24-h old culture
Species	bivalve (Hyridella depressa)	bivalve (Hyridella depressa)	bivalve (Hyridella depressa)	bivalve (Hyridella depressa)	bacteria (<i>Erwinia</i> sp.)	bacteria (<i>Erwinia</i> sp.)
Division/ phylum	Mollusca				Bacteria	
Metal	Cadmium				Copper	

1	1								
Reference	Rogers et al. (2005)	Rogers et al. (2005)	Rogers et al. (2005)	Rogers et al. (2005)	Markich et al (2005)				
Duality score (%)	66	66	66	66	64	64	64	64	64
Cone C type ^b	Е	E	В	Е	E	E	E	E	E
Unit of toxic conc ^a	µg/L	µg/L	µg/L	µg/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L
 Toxic conc & measure of toxicity 	3.4 (EC50) (0.9-4.8)	5.6 (EC50) (1.1-7.2)	0.6 (EC50) (0.4-1)	3.4 - 34.0 (EC50)	8 (IC50) (6-9)	8 (IC50) (5-10)	13 (IC50) (9-14)	11 (JC50) (8-16)	11 (IC50) (10-11)
Duration	4(h)	4(h)	4(h)	4(h)	4(h)	4(h)	4(h)	4(h)	4(h)
Endpoint	assimilation of 14C- glucose								
Organic Carbon (mg/L)									
Alkalinity (mg CaCO ₃ /L)									
Hard- ness	120	400	40		25	140	375	25	140
Conduct- ivity (µS/cm)									
Hq	6.5	6.5	7.5		6.1	6.1	6.1	7	7
Temp (°C)	30	30	30	30	30	30	30	30	30
Test medium	synthetic freshwater	synthetic freshwater	synthetic freshwater	riverine water from NSW	natural freshwater from Paddy's Creek NSW				
Mode of exposure	static	static	static	static	static	static	static	static	static
Life Stage	24-h old culture	24-h old culture	24-h old culture	24-h old culture	NR	NR	NR	NR	NR
Species	bacteria (<i>Erwinia</i> sp.)								
Division/ phylum	Bacteria								
Metal	Copper								

/ Reference	Markich et al. (2005)	Markich et al. (2005)	Markich et al. (2005)	Markich et al. (2005)	Markich et al. (2005)	Markich et al. (2005)	Markich et al. (2005)	Franklin et al. (2004)	Franklin et al. (2004)
Quality score (%)	64	64	64	64	64	64	64	70	70
Conc (type ^b	Ξ	E	E	E	E	В	В	E	Е
Unit of toxic conc ^a	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg/L	µg/L
Toxic conc & measure of toxicity	11 (IC50) (10-13)	13 (IC50) (12-13)	10 (IC50) (9-10)	10 (IC50) (9-10)	2.5 (IC50) (2.3-2.8)	3.4 (IC50) (0.9-4.5)	5.6 (IC50) (2.1-7.3)	<0.75 (IC50) <0.75 (IC50)	<0.75 (IC50) <0.75 (IC50)
Juration	4(h)	4(h)	4(h)	4(h)	4(h)	4(h)	4(h)	48(h)	72(h)
Endpoint 1	assimilation of 14C- glucose	assimilation of 14C- glucose	assimilation of 14C- glucose	assimilation of 14C- glucose	assimilation of 14C- glucose	assimilation of 14C- glucose	assimilation of 14C- glucose	growth rate	growth rate
Organic Carbon (mg/L)									
Alkalinity (mg CaCO ₃ /L)								30-35	30-35
Hard- ness	375	25	140	375	44	125	374	40-48	40-48
Conduct- ivity (µS/cm)									
Hq q	4	7.8	7.8	7.8					
Tem (°C)	30	30	30	30	30	30	30	21	21
Test medium	natural freshwater from Paddy's Creek NSW	natural freshwater from Paddy's Creek NSW	natural freshwater from Paddy's Creek NSW	natural freshwater from Paddy's Creek NSW	synthetic freshwater	synthetic freshwater	synthetic freshwater	synthetic softwater	synthetic softwater
Mode of exposure	static	static	static	static	static	static	static	static	static
Life Stage	NR	NR	NR	NR	NR	NR	NR	e exponential growth phase	e exponential growth phase
Species	bacteria (<i>Erwinia</i> sp.)	bacteria (<i>Erwinia</i> sp.)	bacteria (<i>Erwinia</i> sp.)	bacteria (<i>Erwinia</i> sp.)	bacteria (<i>Erwinia</i> sp.)	bacteria (<i>Erwinia</i> sp.)	bacteria (<i>Erwinia</i> sp.)	blue-green alga (<i>Microcystis</i> <i>aeruginosa</i>)	blue-green alga (<i>Microcystis</i> <i>aeruginosa</i>)
Division/ phylum	Bacteria							Cyano- bacteria	
Metal	Copper							Copper	

	1	_:				
Reference	Franklin et a (2004)	Franklin et a (2004)	De Schamphe- laere et al. (2005)	Franklin et a (2002)	Franklin et a. (2002)	Franklin et al (2002)
Quality score (%)	70	70	70	73	78	70
Conc (type ^b	Е	В	В	E	E	Е
Unit of toxic conc ^a	µg/L	µg/L	fg/cell	μg/L	μg/L	µmol/L
 Toxic conc & measure of toxicity 	2.7 (IC50) (2.3-3.4) 5.1 (IC50) (4.7-5.6)	2.8 (IC50) (2.1-3.6) 9.8 (IC50) (7.1-14)	28.9 (EC50) (26.7-31.7) (1 (EC10) (0.7-1.6) 16 (EC10) 16 (EC10) (13.3-19.4) 7.1 (EC50) (5.8-8.7)	4.7 (NOEC) 1.1 (NOEC) 2.4 (NOEC) 9 (NOEC) 3.3 (LOEC) 12 (LOEC) 6 (LOEC) 6 (LOEC)	7.3 (LOEC) (6.7-8) (6.7-8) 4.6 (EC50) (3.5-6) 4.4 (EC50) (3.9-5) (14-18) (14-18)	0.05 (NOEC) 0.07 (LOEC)
Duration	48(h)	72(h)	48(h)	72(h)	72(h)	48(h)
Endpoint	growth rate	growth rate	growth rate	growth rate	growth rate	growth rate
Organic Carbon (mg/L)						
Alkalinity (mg CaCO ₃ /L)	30-35	30-35		0	σ	
Hard- ness	40-48	40-48		15	15	
Conduct- ivity (µS/cm)						
Hq -				7.5 ±0.2	7.5 ±0.2	7.5
Temp (°C)	21	21	24	24	24	27
Test medium	synthetic softwater	synthetic softwater	synthetic freshwater	synthetic softwater	softwater	synthetic softwater
Mode of exposure	static	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
Species	euglenoid (Trachelomonas sp.)	euglenoid (Trachelomonas sp.)	green algae (<i>Chlorella</i> sp.)	green algae (Chlorella sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)
Division/	Chloro- phyta (
Metal	Copper					

70

onc Quality Reference pe ^b score (%)	m 75 Franklin et al. (2002)	m 70 Franklin et al. (2002)	m 75 Franklin et al. (2002)	m 75 Franklin et al. (2002)	m 68 Johnson et al. (2007)
uit of C oxic ty onc ^a	nol/L	nol/L	nol/L	UT	lg/L
Toxic conc U ₁ & measure to	0.09 (EC50) µr (0.08-0.11)	0.07 (NOEC) µr 0.09 (LOEC)	0.11 (EC50) µг (0.11-0.13)	0.95 (EC50) (0.92-1)	4.3 (NOEC) p 3.4 (NOEC) p 4.1 (NOEC) 4.3 (NOEC)
Duration	48(h)	72(h)	72(h)	72(h)	72(h)
Endpoint I	growth rate	growth rate	growth rate	growth rate	growth
Organic Carbon (mg/L)					
Alkalinity (mg CaCO ₃ /L)					
Hard- ness					
Conduct- ivity (µS/cm)					
Hd	7.5	7.5	7.5	7.5	
Temp (°C)	27	27	27	27	27±1
Test medium	synthetic softwater	synthetic softwater	synthetic softwater	synthetic softwater	JM/5 medium
Mode of exposure	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
Species	green algae (Chlorella sp.)	green algae (Chlorella sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)
Division/ phylum	Chloro- phyta				
Metal	Copper				

Reference	(2007) et al.
Juality] score (%)	72 (()
Cone (type ^b	E
Unit of toxic conc ^a	цg/L
 Toxic conc & measure of toxicity 	2.5 (IC10) (0.7-6.6) 9.1 (IC10) (0-9.6) (1-9.6) (1-9.6) (1-9.6) (1-9.6) (1-9.6) (1-1-19) (1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-1-19) (1-19)
Duratio	72(h)
Endpoint	growth
Organic Carbon (mg/L)	
Alkalinity (mg CaCO ₃ /L)	
Hard- ness	
Conduct- ivity (µS/cm)	
Temp pH (°C)	27±1
Test medium	JM/5 medium
Mode of exposure	static
Life Stage	exponential growth phase
Species	(<i>Chlorella</i> sp.)
Division/ phylum	phyta
Metal	Copper

Vol. 15, pp. 51-184, 2009

							al.	al.
/ Reference	Levy et al. (2009)	Levy et al. (2009)	Levy et al. (2009)	Levy et al. (2009)	Levy et al. (2009)	Levy et al. (2009)	Markich et (2005)	Markich et (2005)
Quality score (%)	69	74	69	74	69	74	86	86
Conc	Е	Е	E	В	E	в	E	E
Unit of toxic conc ^a	μg Cu/L	μg Cu/L	μg Cu/L	µg Cu/L	μg Cu/L	µg Cu/L	μg Cu/L	μg Cu/L
Toxic conc& measureof toxicity	4 (NOEC) 26 (NOEC) 5 (LOEC) 55 (LOEC)	208 (EC50) (114-289) 46 (EC50) (36-57)	<1 (NOEC) <1 (NOEC) 1 (LOEC) 1 (LOEC)	19 (EC50) (0-43) 28 (EC50) (27-28)	2.3 (NOEC) 2.3 (NOEC) 2.8 (LOEC) 3 (LOEC)	3.1 (EC50) (3-3.2) 3 (EC50) (2.9-3)	48 (IC50) (40-45)	30 (IC50) (26-32)
Duration	72(h)	72(h)	72(h)	72(h)	72(h)	72(h)	48(h)	48(h)
Endpoint	growth rate	growth rate	growth rate	growth rate	growth rate	growth rate	cell division	cell division
Organic Carbon (mg/L)								
Alkalinity (mg CaCO ₃ /L)								
Hard- ness	2-4	2-4	2-4	2-4	80-90	80-90	25	140
Conduct- ivity (µS/cm)								
Hd	5.7	5.7	6.5	6.5	7.4- 7.5	7.4- 7.5	6.1	6.1
Temp (°C)	27	27	27	27	27	27		
Test medium	very softwater	very softwater	very softwater	very softwater	softwater	softwater	natural freshwater from Paddy's Creek NSW	natural freshwater from Paddy's Creek NSW
Mode of exposure	static	static	static	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
/ Species	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (Chlorella sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (Chlorella sp.)	green algae (<i>Chlorella</i> sp.)
Division	Chloro- phyta							
Metal	Copper							

	al.	al.	al.	al.	al.	al.	al.	al.
Reference	Markich et (2005)	Markich et (2005)	Markich et (2005)	Markich et (2005)	Markich et (2005)	Markich et (2005)	Markich et (2005)	Markich et (2005)
Quality score (%)	86	86	86	86	86	86	86	86
Conc type ^b	E	B	E	В	E	E	Ξ	E
Unit of toxic conc ^a	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L
Toxic conc & measure of toxicity	16 (IC50) (14-18)	42 (IC50) (38-44)	19 (IC50) (16-23)	25 (IC50) (22-27)	46 (IC50) (42-49)	38 (IC50) (36-40)	45 (IC50) (43-48)	11 (IC50) (11-12)
Duration	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)
Endpoint	cell division	cell division	cell division	cell division	cell division	cell division	cell division	cell division
Organic Carbon (mg/L)								
Alkalinity (mg CaCO ₃ /L)								
Hard- ness	375	25	140	375	25	140	375	25
Conduct- ivity (µS/cm)								
hq d	6.1	6.5	6.5	6.5	Γ	~	5	7.8
Tem (°C)	- ×	× r	× L	z z	× 4	× r	z r	ч Х
Test medium	natural freshwate from Paddy's Creek NS'	natural freshwate from Paddy's Creek NS'	natural freshwate from Paddy's Creek NS'	natural freshwate from Paddy's Creek NS	natural freshwate from Paddy's Creek NS'	natural freshwate from Paddy's Creek NS'	natural freshwate from Paddy's Creek NS'	natural freshwate from Paddy's Creek NS'
Mode of exposure	static	static	static	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
Species	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (Chlorella sp.)	green algae (Chlorella sp.)	green algae (<i>Chlorella</i> sp.)	green algae (Chlorella sp.)
Division/ phylum	Chloro- phyta							
Metal	Copper							

ity Reference e	Markich et al. (2005)	Markich et al. (2005)	Markich et al. (2005)	Markich et al. (2005)	Markich et al. (2005)	Wilde et al. (2006)	Wilde et al. (2006)				
c Quali scor (%)	86	86	86	86	86	86	86	86	86	86	86
. Conc type	Ε	Е	В	В	Ξ	E	E	E	E	Ε	E
Unit of toxic conc ^a	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg Cu/L	μg/L	μg/L	hg/L	µg/L	µg/L	µg/L
Toxic conc & measure of toxicity	14 (IC50) (12-17)	12 (IC50) (11-12)	4.5 (IC50) (1.8-6.6)	3.4 (IC50) (3-5.2)	3.4 (IC50) (2.8-4)	2.6 (MDEC) 19 (IC50) (16-22)	2.2 (MDEC) 7.1 (IC50) (6.1-8.1)	1.2 (MDEC) 2.7 (IC50) (2.3-3.1)	0.8 (MDEC) 1.7 (IC50) (1.5-1.9)	0.4 (MDEC) 1.1 (IC50) (1-1.2)	0.5 (MDEC) 1 (IC50) (0.9-1.1)
Duration	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)
Endpoint	cell division	cell division	cell division	cell division	cell division	growth	growth	growth	growth	growth	growth
Organic Carbon (mg/L)											
Alkalinity (mg CaCO ₃ /L)											
Hard- ness	140	375	44	125	374	40-48	40-48	40-48	40-48	40-48	40-48
Conduct- ivity (µS/cm)						160	160	160	160	160	160
Hq	7.8	7.8				5.5	9	6.5	7	7.5	8
Temp (°C)						27	27	27	27	27	27
Test medium	natural freshwater from Paddy's Creek NSW	natural freshwater from Paddy's Creek NSW	synthetic freshwater	synthetic freshwater							
Mode of exposure	static	static	static	static	static	static	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
Species	green algae (<i>Chlorella</i> sp.)	green algae (Chlorella sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (Chlorella sp.)
Division/ phylum	Chloro- phyta										
Metal	Copper										

Langdon et al

75

Reference	Levy et al. (2009)	Levy et al. (2009)	Franklin et al. (2004)	Franklin et al. (2004)	Franklin et al. (2002)	Franklin et al. (2002)
Quality score (%)	69	74	70	70	73	78
Conc (type ^b	Е	E	Ξ	В	ε	ε
Unit of toxic conc ^a	μg Cu/L	μg Cu/L	µg/L	µg/L	μg/L	μg/L
1 Toxic conc & measure of toxicity	0.3 (NOEC) >0.8 (NOEC) 0.6 (LOEC) >0.8 (LOEC)	0.8 (EC50) (0.8-0.9) 0.8 (EC50) (0.5-1.1)	4.2 (IC50) (3.1-5.6) 5.1 (IC50) (3.9-6.8)	4.7 (IC50) (3.8-5.8) 4.6 (IC50) (3.8-5.6)	4.6 (NOEC) 1.8 (NOEC) 1.9 (NOEC) 3.4 (NOEC) 3.2 (LOEC) 4.8 (LOEC) 6.6 (LOEC) 3.8 (LOEC) 3.8 (LOEC)	17 (EC50) (14-20) 7.5 (EC50) (6.8-8.2) 6.2 (EC50) 5.5-6.9) 6.6 (EC50) 6.9 (5.9-7.3)
Duratio	72(h)	72(h)	48(h)	72(h)	72(h)	72(h)
Endpoint	growth rate	growth rate	growth rate	growth rate	growth rate	growth rate
Organic Carbon (mg/L)						
Alkalinity (mg CaCO ₃ /L)			30-35	30-35	Q	0
Hard- ness	80-90	80-90	40-48	40-48	15	15
Conduct- ivity (µS/cm)						
Hd	7.4- 7.5	7.4- 7.5			7.5 ±0.2	7.5 ±0.2
Temp (°C)	21	21	21	21	24	24
Test medium	US EPA standard medium without EDTA	US EPA standard medium without EDTA	synthetic softwater	synthetic softwater	US EPA standard medium without EDTA	US EPA standard medium without EDTA
Mode of exposure	static	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
/ Species	green algae (<i>Pseudokirch-</i> neriella subcapitata)	green algae (Pseudokirch- neriella subcapitata)	green algae (Pseudokirch- neriella subcapitata)	green algae (Pseudokirch- neriella subcapitata)	green algae (Pseudokirch- neriella subcapitata)	green algae (Pseudokirch- meriella subcapitata)
Division. phylun	Chloro- phyta					
Metal	Copper					

Reference	De Schamphe- laere et al. (2005)	Charles et al. (2006)	Markich et al. (2006)	Markich et al. (2006)	Markich et al. (2006)	Markich et al. (2006)	Markich et al. (2006)	Markich et al. (2006)	Markich et al. (2006)	Markich et al. (2006)
Quality score (%)	70	89	93	93	93	93	93	93	93	93
Conc type ^b	E	В	Е	В	Е	E	в	E	в	В
Unit of toxic conc ^a	fg/cell	µg/L	µg/L	µg/L	µg/L	hg/L	hg/L	μg/L	hg/L	hg/L
 Toxic conc & measure of toxicity 	16.9 (EC10) (11.7-24.3) 2.7 (EC10) (1.5-4.7) 52.9 (EC50) (46-61.5) 15.6 (EC50) (12-20.3)	3.2 (MDEC) 16.2 (EC50) (15.5-16.9)	4.6 (MDEC) 8.4 (EC50) (7.6-9.2)	14 (MDEC) 36 (EC50) (33-38)	5.4 (MDEC) 9.8 (EC50) (8.9-11)	9.3 (MDEC) 28 (EC50) (26-31)	5.3 (MDEC) 8.9 (EC50) (8-9.8)	15 (MDEC) 37 (EC50) (35-40)	5.3 (MDEC) 10 (EC50) (9.1-11)	9.9 (MDEC) 31 (EC50) (28-33)
Duration	48(h)	96(h)	96(h)	96(h)	96(h)	96(h)	96(h)	96(h)	96(h)	96(h)
Endpoint	growth rate	growth	biomass	carotenoids	stem length	total chl	biomass	carotenoids	stem length	total chl
Organic Carbon (mg/L)										
Alkalinity (mg CaCO ₃ /L)										
Hard- ness			35	35	35	35	06	06	06	06
oH Conduct- ivity (μS/cm)		5.5 0.2	7.0 0.2	7.0 0.2	7.0 0.2	7.0 0.2	7.0 0.2	7.0 0.2	7.0 0.2	7.0 0.2
remp p (°C)	25±1	27±1 6 ±	27±1 7 ±	27±1 7 ±	27±1 7 ±	27±1 7 ±	27±1 7 ±	27±1 7 ±	27±1 7 ±	27±1 7 ±
Test medium	OECD test water without EDTA	synthetic freshwater	synthetic freshwater	synthetic freshwater	synthetic freshwater	synthetic freshwater	synthetic freshwater	synthetic freshwater	synthetic freshwater	synthetic freshwater
Mode of exposure	static	semi-static	semi-static	semi-static	semi-static	semi-static	semi-static	semi-static	semi-static	semi-static
Life Stage	exponential growth phase	12 fronds	10 days old, 5 leaf whorls	10 days old, 5 leaf whorls	10 days old, 5 leaf whorls	10 days old, 5 leaf whorls	10 days old, 5 leaf whorls	10 days old, 5 leaf whorls	10 days old, 5 leaf whorls	10 days old, 5 leaf whorls
Species	green algae (Pseudokirch- neriella subcapitata)	duckweed (Lemna aequinoctialis)	rigid hornwort (<i>Ceratophyllum</i> <i>demersum</i>)	rigid hornwort (Ceratophyllum demersum)	rigid hornwort (<i>Ceratophyllum</i> <i>demersum</i>)					
Division/ phylum	Chloro- phyta	Magnolio -phyta								
Metal	Copper	Copper								

Mathematical and	Division phylun	/ Species 1	Life Stage	Mode of exposure	Test medium	Temp (°C)	μd	Conduct- ivity (μS/cm)	Hard- ness	Alkalinity (mg CaCO ₃ /L)	Organic Carbon (mg/L)	Endpoint	Duration	Toxic conc & measure of toxicity	Unit of toxic conc ^a	Conc (type ^b	Quality score (%)	Reference
Ligid hornword denormany10 days old, wordssynthetic febbane7.1 (10155)3.35 (37-11)earoreoide (37-11)6(0)1.7 (MDEC)10/110/1109.310/1Ligid hornword denormany wordswordssynthetic27.4 (10155)7.0 (10155)3.35 (10155)3.35 (10155)3.31 (10155)3.31 (10155)3.41 (10155)109.3 (10155)109.3 (10155)109.3 (10155)10 <td>a lič</td> <td>rigid hornwort (Ceratophyllum demersum)</td> <td>10 days old, 5 leaf whorls</td> <td>semi-static</td> <td>synthetic freshwater</td> <td>27±1</td> <td>7.0 ±0.2</td> <td></td> <td>335</td> <td></td> <td></td> <td>biomass</td> <td>96(h)</td> <td>5.1 (MDEC) 9.9 (EC50) (9-11)</td> <td>µg/L</td> <td>E</td> <td>93</td> <td>Markich et al. (2006)</td>	a lič	rigid hornwort (Ceratophyllum demersum)	10 days old, 5 leaf whorls	semi-static	synthetic freshwater	27±1	7.0 ±0.2		335			biomass	96(h)	5.1 (MDEC) 9.9 (EC50) (9-11)	µg/L	E	93	Markich et al. (2006)
rigid hornwort10 days old, winstsemisatic febavaarsynthetic febavaar7.17.33sem lengin (10.12)960, (10.12)1670, (10.12)197, (10.12)193, (10.12)rigid hornwortNoisirestoratic febavaarsynthetic febavaar27.117.03.33sem lengin960, (10.12)10.310.310.310.310.3rigid hornwortSemisatic febavaarsynthetic febavaar27.117.03.33semisatic (29.34)960, (10.12)10.42.02.02.0constration febavaarstatic febavaarsantic matual creek 25:117.1160-1802.311.1 (FCS0)10.410.42.02.02.0constration febavaarconstration febavaarsanticmatual creek 25:117.1160-1802.311.1 (FCS0)10.410.42.02.02.0constration febavaarconstration febavaarsanticmatual creek 25:117.1160-1802.311.1 (FCS0)10.410.42.02.02.0constration febavaarconstration febavaarsanticmatual creek 25:117.1160-1802.310.42.62.02		rigid hornwort (Ceratophyllum demersum)	10 days old, 5 leaf whorls	semi-static	synthetic freshwater	27±1	7.0 ±0.2		335		-	carotenoids	96(h)	17 (MDEC) 39 (EC50) (37-41)	µg/L	В	93	Markich et al. (2006)
Tigid hornvert10 days old, sensisticsensisticsynthetic274700 <td></td> <td>rigid hornwort (Ceratophyllum demersum)</td> <td>10 days old, 5 leaf whorls</td> <td>semi-static</td> <td>synthetic freshwater</td> <td>27±1</td> <td>7.0 ±0.2</td> <td></td> <td>335</td> <td></td> <td></td> <td>stem length</td> <td>96(h)</td> <td>5.6 (MDEC) 11 (EC50) (10-12)</td> <td>µg/L</td> <td>E</td> <td>93</td> <td>Markich et al. (2006)</td>		rigid hornwort (Ceratophyllum demersum)	10 days old, 5 leaf whorls	semi-static	synthetic freshwater	27±1	7.0 ±0.2		335			stem length	96(h)	5.6 (MDEC) 11 (EC50) (10-12)	µg/L	E	93	Markich et al. (2006)
cer cladocerun c fabios) $(24h \text{ old})$ saticattual creek 25 ± 1 6 $[60-180]$ 25 13 immobilis atton $48(h)$ $11(EC50)$ $\mu gl.$ m 90 13 $(Ceriodaphuidr dubis)eonates(24h \text{ old})staticmunal creek 25\pm17[60-180]2513munobilis48(h)21(E50)\mu gl.m9013(Ceriodaphuidr dubis)eonates(24h \text{ old})staticmunal creek 25\pm17[60-180]2513munobilis48(h)21(E50)\mu gl.m9013(Ceriodaphuidr dubis)eonates(24h \text{ old})staticmunal creek 25\pm17[60-180]4430100132(25)10^{11}m9013^{11}(Ceriodaphuidr dubis)eonates(24h \text{ old})staticmunal creek 25\pm17[60-180]443010010101010(Ceriodaphuidr dubis)eonates(24h \text{ old})staticmunal creek 25\pm17[60-180]443010010101010(Ceriodaphuidr dubis)eouates(24)(10-13)(10)1010101010101010(Ceriodaphuidr dubis)eouates(10-13)(10)101010101010$		rigid hornwort (Ceratophyllum demersum)	10 days old, 5 leaf whorls	semi-static	synthetic freshwater	27±1	7.0 ±0.2		335			total chl	96(h)	10.8 (MDEC) 31 (EC50) (29-34)	µg/L	В	93	Markich et al. (2006)
	če	a cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	natural creek water	25±1	6	160-180	25	13		immobilis- ation	48(h)	11 (EC50) (10-12)	µg/L	В	06	Hyne et al. (2005)
		cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	natural creek water	25±1	L	160-180	25	13		immobilis- ation	48(h)	23 (EC50) (21-25)	µg/L	Ξ	06	Hyne et al. (2005)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	natural creek water	25±1	7.8	160-180	25	13		immobilis- ation	48(h)	42 (EC50) (39-45)	μg/L	E	06	Hyne et al. (2005)
cladoceran < 24-h old static natural creek 25 ± 1 7 160-180 140 13 immobilis- 48(h) 32 (EC50) μ g/L m 90 Hy (<i>Ceriodaphnia</i> neonates water 29-34) (20 cf <i>dubia</i>)		cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	natural creek water	25±1		160-180	4	30		ation	48(h)	55 (EC50) 13 (EC50) 35 (EC50) 18 (EC50) 37 (EC50) 48 (EC50) 68 (EC50) 98 (EC50) 98 (EC50) 98 (EC50) 98 (EC50)	µg/L	E	06	Hyne et al. (2005)
		cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	natural creek water	25±1	2	160-180	140	13		immobilis- ation	48(h)	32 (EC50) (29-34)	μg/L	ε	90	Hyne et al. (2005)

	Ministen/ Succion	1 :fo Ctano	Madaaf	Taat	T _{on}	1	to the second	II and	Allolinite. Aucouio	Fudantat	Duration	Torio cino T	11-11 26	500		Defenses
-	phylum	adate otage	moue or exposure	nedium		ud	ivity (µS/cm)	ness	CaCO ₃ /L) (mg/L)	Furbourt	Duratio	& measure of toxicity	to til toxic conc ^a	type	score (%)	ania latan (
	rustacea cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	natural creek water	25±1	٢	160-180	374	13	immobilis- ation	48(h)	30 (EC50) (27-32)	μg/L	ε	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	synthetic softwater	25±1	6.5	160-180	44	30	immobilis- ation	48(h)	9.5 (EC50) 41 (EC50) 1.6 (EC50) (1.8-2.3)	µg/L	E	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	synthetic softwater	25±1	7.5	160-180	44	30	immobilis- ation	48(h)	2.8 (EC50) (2.5-3.1)	µg/L	E	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	synthetic softwater	25±1	8.1	160-180	44	60	immobilis- ation	48(h)	6.5 (EC50) (7.1-5.9)	μg/L	E	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	synthetic softwater	25±1	8.4	160-180	44	125	immobilis- ation	48(h)	16 (EC50) (14-17)	µg/L	E	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	synthetic softwater	25±1	6.5	160-180	44	30	immobilis- ation	48(h)	73 (EC50) (67-78)	µg/L	E	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	synthetic softwater	25±1	7.5	160-180	44	30	immobilis- ation	48(h)	2.2 (EC50) (2-2.5)	µg/L	E	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	synthetic softwater	25±1	6.5	160-180	44	30	immobilis- ation	48(h)	1.6 (EC50) (1.4-1.7)	μg/L	E	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	< 24-h old neonates	static	synthetic softwater	25±1	5.5	160-180	44	30	immobilis- ation	48(h)	1.6 (EC50) (1.3-1.9)	µg/L	E	06	Hyne et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> dubia)	female <24-h old neonates	static	synthetic freshwater	25±1			44		immobilis- ation	48(h)	1.6 (IC50) (1.4-1.7)	μg Cu/L	E	83	Markich et al. (2005)
	cladoceran (<i>Ceriodaphnia</i> dubia)	female <24-h old neonates	static	synthetic freshwater	25±1			374		immobilis- ation	48(h)	1.6 (IC50) (1.4-1.7)	μg Cu/L	E	83	Markich et al. (2005)

Reference	Markich et al. (2005)							
Quality score (%)	83	83	83	83	83	83	83	83
Cone • type ^b	E	В	E	E	E	ε	E	Ε
Unit of toxic conc ^a	μg Cu/L							
Toxic conc & measure of toxicity	11 (IC50) (10-12)	12 (IC50) (11-13)	9 (IC50) (4-14)	23 (IC50) (21-25)	32 (IC50) (29-34)	30 (IC50) (27-32)	42 (IC50) (39-45)	39 (IC50) (37-41)
Duration	48(h)							
Endpoint	immobilis- ation							
Alkalinity Organic (mg Carbon CaCO ₃ /L) (mg/L)								
Hard- ness	25	140	375	25	140	375	25	140
Conduct- ivity (µS/cm)								
Ηd	6.1	6.1	6.1	2	٢	L	7.8	7.8
Temp (°C)	25±1	25±1	25±1	25±1	25±1	25±1	25±1	25±1
Test medium	natural freshwater from Paddy's Creek NSW							
Mode of exposure	static							
Life Stage	female <24-h old neonates	<24-h old neonates	female <24-h old neonates	female <24-h old neonates	female <24-h old neonates	female <24-h old neonates	female <24-h old neonates	female <24-h old neonates
vision/ Species hylum	Istacea cladoceran (<i>Ceriodaphnia</i> dubia)	cladoceran (<i>Ceriodaphnia</i> dubia)	cladoceran (<i>Ceriodaphnia</i> dubia)	cladoceran (<i>Ceriodaphnia</i> dubia)	cladoceran (<i>Ceriodaphnia</i> dubia)	cladoceran (<i>Ceriodaphnia</i> dubia)	cladoceran (<i>Ceriodaphnia</i> <i>dubia</i>)	cladoceran (Ceriodaphnia dubia)
Metal Div P	Copper Cru							

80

of Test Temp pF re medium (°C)
~
5 350 3 ±38
5 350 3 ±38,
5 350. .3 ±38.
5 350.3 3 ±38.
1 97±1

Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)) Hq	Conduct- ivity (µS/cm)	Hard- ness	Alkalinity (mg CaCO ₃ /L)	Organic Carbon (mg/L)	Endpoint	Duration	Toxic conc & measure of toxicity	Unit of toxic conc ^a	Conc (type ^b	Quality score (%)	Reference
stacea	yabby or crayfish (<i>Cherax</i> <i>destructor</i>)	juveniles (28d)	semi-static	carbon filtered Melb mains water	22±1	8±1	1±79				mortality	48(h)	993 (LC50)	µg/L	NR	77	Khan & Nugegoda (2007)
	yabby or crayfish (<i>Cherax</i> <i>destructor</i>)	juveniles (28d)	semi-static	carbon filtered Melb mains water	22±1	8±1	1±79				mortality	72(h)	509 (LC50)	µg/L	NR	<i>LT</i>	Khan & Nugegoda (2007)
	yabby or crayfish <i>(Cherax</i> <i>destructor</i>)	juveniles (28d)	semi-static	carbon filtered Melb mains water	22±1	8±1	1±79				mortality	96(h)	379 (LC50) (275-444)	µg/L	NR	77	Khan & Nugegoda (2007)
ollusca	bivalve (Hyridella depressa)	shell length 27-77mm	flow-through	synthetic Hawkes- bury- Nepean River water	20 ±0.1	ó.5					duration valve opening	48(h)	75 (MDEC) 14 (MDEC) 211 (MDEC) 72 (BEC10) 13 (BEC10) 13 (BEC10) 82.3 (EC20) 15.9 (EC20) 15.9 (EC20) 226 (EC20) 279 (EC20) 279 (EC20) 97 (EC50) 97 (EC50) 97 (EC50) 97 (EC80) 115 (EC80) 330 (EC80)	Дан	E	79	(2003) (2003)
	bivalve (Hyridella depressa)	shell length 27-77mm	flow-through I	synthetic Hawkes- bury- Nepean čiver water	20 ±0.1	6.8					duration valve opening	48(h)	16.2 (MDEC) 15.3 15.3 (BEC10) 18.4 (EC20) 22.8 (EC20) (21.9-23.7) 28 (EC80)	µg/L	Ε	62	Markich et al. (2003)

Reference	Markich et al. (2003)	Markich et al. (2003)	Markich et al. (2003)
Quality score (%)	79	46	79
Conc of type ^b	н	E	в
Unit of toxic conc ^a	µg/L	нg/L	µg/L
Toxic conc & measure of toxicity	20 (MDEC) 426 (MDEC) 157 (MDEC) 157 (MDEC) 150 (BEC10) 19 (BEC10) 19 (BEC10) 21.8 (EC20)	173 (EC20) 462 (EC20) 27 (EC50) (26-28) 200 (EC50) (194-206) 525 (EC50) (194-206) 525 (EC50) 526 (EC80) 32.6 (EC80) 536 (EC80)	27 (MDEC) 26 (BEC10) 29.6 (EC20) 36 (EC50) (34.5-37.5) 43.1 (EC80)
Duration	48(h)	48(h)	48(h)
Endpoint	duration valve opening	duration valve opening	duration valve opening
Organic Carbon (mg/L)			
Alkalinity (mg CaCO ₃ /L)			
Hard- ness			
Conduct- ivity (µS/cm)			
Hd	٢	7	7.3
Temp (°C)	20 ±0.1	20 ±0.1	20 ±0.1
Test medium	synthetic Hawkes- bury- Nepean River water	synthetic Hawkes- bury- Nepean River water	synthetic Hawkes- bury- Nepean River water
Mode of exposure	flow-through	flow-through	flow-through
Life Stage	shell length 27-77mm	shell length 27-77mm	shell length 27-77mm
Division/ Species phylum	Mollusca bivalve (<i>Hyridella</i> <i>depressa</i>)	bivalve (<i>Hjvridella</i> <i>depressa</i>)	bivalve (Hjyridella depressa)
Metal	Copper		

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Reference	Markich et al. (2003)	Khan & Nugegoda (2007)	Khan & Nugegoda (2007)	Khan & Nugegoda (2007)	Khan & Nugegoda (2007)
Quality score (%)	62	77	77	77	77
Cone (type ^b	E	NR	NR	NR	NR
Unit of toxic conc ^a	μg/L	mg/L	mg/L	mg/L	mg/L
1 Toxic conc & measure of toxicity	668 (MDEC) 32 (MDEC) 265 (MDEC) 30 (BEC10) 626 (BEC10) 626 (BEC10) 526 (BEC10) 528 (EC20) 358 (EC20) 718 (EC20) 44 (EC20) (42.345.7) 319 (EC20) (12-326) 792 (EC20) (767-817) 54.9 (EC80) 356 (EC80) 356 (EC80)	177 (LC50) (141-287)	117 (LC50) (97-155)	71 (LC50) (61-84)	51 (LC50) (43-58)
Duration	48(h)	24(h)	48(h)	72(h)	96(h)
Endpoint	duration valve opening	mortality	mortality	mortality	mortality
Organic Carbon (mg/L)					
Alkalinity (mg CaCO ₃ /L)					
Hard- ness					
Conduct- ivity (µS/cm)		99±2	99±2	99±2	99±2
Hq	7.5	7±0.5	7 ±0.5	7 ±0.5	7 ±0.5
Temp (°C)	20 ±0.1	22±2	22±2	22±2	22±2
Test medium	synthetic Hawkes- bury- Nepean River water	carbon filtered Melb mains water	carbon filtered Melb mains water	carbon filtered Melb mains water	carbon filtered Melb mains water
Mode of exposure	flow-through	semi-static	semi-static	semi-static	semi-static
Life Stage	shell length 27-77mm	juveniles (28d)	juveniles (28d)	juveniles (28d)	juveniles (28d)
Division/ Species phylum	Mollusca bivalve (<i>Hyridella</i> <i>depressa</i>)	Crustacea yabby or crayfish (<i>Cherax</i> <i>destructor</i>)	yabby or crayfish (<i>Cherax</i> <i>destructor</i>)	yabby or crayfish (<i>Cherax</i> <i>destructor</i>)	yabby or crayfish (<i>Cherax</i> <i>destructor</i>)
Metal	Copper	Iron			

Australasian metal toxicity data – IV

84

y Reference	Cooper et al. (2009)	Cooper et al. (2009)	Cooper et al. (2009)	Cooper et al. (2009)	Khan & Nugegoda (2007)	Khan & Nugegoda (2007)	Khan & Nugegoda (2007)	Khan & Nugegoda (2007)	Hogan et al. (2005b)	Hogan et al. (2005b)
Qualit score (%)	87	87	87	87	LL	77	77	77	73	78
Conc type ^b	Е	Е	E	Е	NR	NR	NR	NR	В	в
Unit of toxic conc ^a	µg/L	µg/L	µg/L	µg/L	mg/L	mg/L	mg/L	mg/L	µg/L	μg/L
Toxic conc & measure of toxicity	9 (NOEC) 17.9 (LOEC)	2.1 (NOEC) 4.5 (LOEC) 5.1 (EC50) (3.5-7.5)	208.8 (LC50) (160.1- 272.2)	444 (LC50) (330.2- 597.1)	1580 (LC50) (1082- 10514)	1110 (LC50) (788-4197)	468 (LC50) (393-543)	327 (LC50) (290-388)	38 (NOEC) 70 (LOEC)	74 (IC50) (48-103)
Duration	7(d)	7(d)	48(h)	48(h)	24(h)	48(h)	72(h)	96(h)	72(h)	72(h)
Endpoint	survival	reproduc- tion	mortality	mortality	mortality	mortality	mortality	mortality	cell division	cell division
Organic Carbon (mg/L)									Ĵ	Ĵ
Alkalinity (mg CaCO ₃ /L)										
Hard- ness	82.4±6	82.4±6	82.4±6	82.4±6						
Conduct- ivity (μS/cm)	350.2 ±38.7	350.2 ±38.7	350.2 ±38.7	350.2 ±38.7	102±0.5	102±0.5	102±0.5	102±0.5		
Hq	7.5 ±0.3	7.5 ±0.3	7.5 ±0.3	7.5 ±0.3	7±1	7±1	7±1	7±1	6.4- 6.6	6.4- 6.6
Temp (°C)	25±1	25±1	25±1	25±1	22 ±0.5	22 ±0.5	22 ±0.5	22 ±0.5	29±1	29±1
Test medium	moderately hardwater	moderately hardwater	moderately hardwater	moderately hardwater	carbon filtered Melb mains water	carbon filtered Melb mains water	carbon filtered Melb mains water	carbon filtered Melb mains water	synthetic Magela Creek water	synthetic Magela Creek water
Mode of exposure	semi-static	semi-static	static	static	semi-static	semi-static	semi-static	semi-static	static	static
Life Stage	neonate	neonate	neonate	neonate	juveniles (28d)	juveniles (28d)	juveniles (28d)	juveniles (28d)	NR	NR
ion/ Species lum	acea cladoceran (<i>Ceriodaphnia</i> <i>dubia</i>)	cladoceran (<i>Ceriodaphnia</i> dubia)	cladoceran (<i>Ceriodaphnia</i> <i>dubia</i>)	cladoceran (Daphnia carinata)	acea yabby or crayfish (<i>Cherax</i> <i>destructor</i>)	o- green algae ta (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)			
Divisi	Crusta				Crusta				Chlor(phyt	
Metal	Lead				Nickel				Uranium	

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Division/ Species Life Stage Mode of phylum exposure	Species Life Stage Mode of exposure	Life Stage Mode of exposure	Mode of exposure		Test medium	Temp (°C)	Hq	Conduct- ivity (µS/cm)	Hard- ness	Alkalinity (mg CaCO ₃ /L)	Organic Carbon (mg/L)	Endpoint	Duration	Toxic conc & measure of toxicity	Unit of toxic conc ^a	Conc type ^b	Quality score (%)	Reference
Chloro- green algae NR static Magela 29±1 6. phyta (<i>Chlorella</i> sp.) Creek water 6	green algae NR static Magela 29±1 6. (<i>Chiorella</i> sp.) Creek water 6	NR static Magela 29±1 6. Creek water 6	static Magela 29±1 6. Creek water 6	Magela 29±1 6. Creek water 6	29±1 6. 6	6.	- 4					cell division	72(h)	109 (NOEC) 136 (LOEC)	µg/L	E	73	Hogan et al. (2005b)
green algae NR static Magela 29±1 6 (<i>Chlorella</i> sp.) Creek water 6	green algae NR static Magela 29±1 6 (<i>Chlorella</i> sp.) Creek water 6	NR static Magela 29±1 6 Creek water 6	static Magela 29±1 6 Creek water 6	Magela 29±1 6 Creek water 6	29±1 6 6	9 0	4.5					cell division	72(h)	166 (IC50) (157-173)	μg/L	В	78	Hogan et al. (2005b)
green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	NR static Magela 29±1 Creek water	static Magela 29±1 Creek water	Magela 29±1 Creek water	29±1		6.2- 6.6					cell division	72(h)	157 (NOEC) 187 (LOEC)	μg/L	в	73	Hogan et al. (2005b)
green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	NR static Magela 29±1 Creek water	static Magela 29±1 Creek water	Magela 29±1 Creek water	29±1		6.2- 6.6					cell division	72(h)	238 (IC50) (233-241)	μg/L	E	78	Hogan et al. (2005b)
green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	NR static Magela 29±1 Creek water	static Magela 29±1 Creek water	Magela 29±1 Creek water	29±1		6.3- 6.6					cell division	72(h)	72 (NOEC) 120 (LOEC)	µg/L	E	73	Hogan et al. (2005b)
green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	NR static Magela 29±1 Creek water	static Magela 29±1 Creek water	Magela 29±1 Creek water	29±1		6.3- 6.6					cell division	72(h)	137 (IC50) (122-150)	µg/L	Ш	78	Hogan et al. (2005b)
green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	green algae NR static Magela 29±1 (<i>Chlorella</i> sp.) Creek water	NR static Magela 29±1 Creek water	static Magela 29±1 Creek water	Magela 29±1 Creek water	29±1		6.4- 6.8					cell division	72(h)	150 (NOEC) 179 (LOEC)	µg/L	Е	73	Hogan et al. (2005b)
green algae NR static Magela 29± (<i>Chlorella</i> sp.) Creek water	green algae NR static Magela 29± (<i>Chlorella</i> sp.) Creek water	NR static Magela 29± Creek water	static Magela 29± Creek water	Magela 29± Creek water	29±	_	6.4- 6.8					cell division	72(h)	177 (IC50) (148-210)	µg/L	E	78	Hogan et al. (2005b)
Magnolio duckweed 12 fronds semi-static synthetic 27±1 -phyta (<i>Lemna</i> freshwater <i>aequinoctialis</i>)	duckweed 12 fronds semi-static synthetic 27±1 (<i>Lemna</i> freshwater <i>aequinoctialis</i>)	12 fronds semi-static synthetic 27±1 freshwater	semi-static synthetic 27±1 freshwater	synthetic 27±1 freshwater	27±1		6.5 ±0.2					growth	96(h)	112 (MDEC) 758 (EC50) (723-793)	μg/L	E	89	Charles et al. (2006)
Cnidaria hydra adults semi-static synthetic 27± (<i>Hydra</i> Magela viridissima) Creek water	hydra adults semi-static synthetic 27± (<i>Hydra</i> Magela viridissima) Creek water	adults semi-static synthetic 27± Magela Creek water	semi-static synthetic 27± Magela Creek water	synthetic 27± Magela Creek water	27±		$6.0 \\ \pm 0.3$	23	6.6	4	<0.2	population growth	96(h)	32 (MDEC) 114 (EC50) (121-107)	μg/L	Ξ	96	Riethmuller et al. (2001)
hydra adults semi-static synthetic 27- (<i>Hydra</i> Magela <i>viridissima</i>) Creek water	hydra adults semi-static synthetic 27- (<i>Hydra</i> Magela viridissima) Creek water	adults semi-static synthetic 27- Magela Creek water	semi-static synthetic 27- Magela Creek water	synthetic 27- Magela Creek water	27=	E .	6.0 ±0.3	23	165	4	<0.2	population growth	96(h)	90 (MDEC) 177 (EC50) (166-188)	µg/L	E	96	Riethmuller et al. (2001)
hydra adults semi-static synthetic 27- (<i>Hydra</i> Magela <i>viridissima</i>) Creek water	hydra adults semi-static synthetic 27- (<i>Hydra</i> Magela <i>viridissima</i>) Creek water	adults semi-static synthetic 27- Magela Creek water	semi-static synthetic 27- Magela Creek water	synthetic 27- Magela Creek water	27=		6.0 ±0.3	23	165	102	<0.2	population growth	96(h)	42 (MDEC) 171 (EC50) (150-192)	µg/L	E	96	Riethmuller et al. (2001)
hydra adults semi-static synthetic 27. (<i>Hydra</i> Magela viridissima) Creek water	hydra adults semi-static synthetic 27. (<i>Hydra</i> Magela viridissima) Creek water	adults semi-static synthetic 27. Magela Creek water	semi-static synthetic 27. Magela Creek water	synthetic 27 Magela Creek water	27	T H	6.0 ± 0.3	23	330	4	<0.2	population growth	96(h)	62 (MDEC) 219 (EC50) (192-246)	μg/L	Ε	96	Riethmuller et al. (2001)
Reference	Markich (2003)	Markich (2003)	Markich (2003)	Markich (2003)	Markich (2003)	Markich (2003)	Markich (2003)	Markich (2003)	Markich (2003)									
--	--	--	--	---	---	---	--	--	--									
Quality score (%)	62	79	79	79	79	79	79	79	79									
Conc type ^b	E	E	В	E	В	E	E	E	E									
Unit of toxic conc ^a	µg/L	µg/L	µg/L	µg/L	μg/L	hg/L	µg/L	µg/L	µg/L									
Toxic conc & measure of toxicity	388 (MDEC) 362 (BEC10) 554 (EC50) (528-580)	253 (MDEC) 238 (BEC10) 387 (EC50) (356-418)	388 (MDEC) 367 (BEC10) 559 (EC50) (533-585)	256 (MDEC) 243 (BEC10) (528-580) 395 (EC50) (364-426)	350 (MDEC) 326 (BEC10) 509 (EC50)	226 (MDEC) 212 (BEC10) 354 (EC50)	387 (MDEC) 365 (BEC10) 555 (EC50) (529-581)	256 (MDEC) 241 (BEC10) 392 (EC50) (361-423)	423 (MDEC) 399 (BEC10) 604 (EC50) (577-631)									
Duration	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)	48(h)									
Endpoint	duration valve opening	valve adductions	duration valve opening	valve adductions	duration valve opening	valve adductions	duration valve opening	valve adductions	duration valve opening									
Organic Carbon (mg/L)																		
Alkalinity (mg CaCO ₃ /L)																		
Hard- ness																		
Conduct- ivity (µS/cm)																		
Hd	6.0 ± 0.1	6.0 ±0.1	6.0 ± 0.1	6.0 ± 0.1	6.0 ± 0.1	6.0 ±0.1	6.0 ±0.1	6.0 ±0.1	6.0 ±0.1									
Temp (°C)	28 ±0.1	28 ±0.1	28 ±0.1	$^{28}_{\pm 0.1}$	28 ±0.1	28 ±0.1	28 ±0.1	28 ±0.1	28 ±0.1									
Test medium	synthetic Magela Creek water	synthetic Magela Creek water	synthetic Magela Creek water	synthetic Magela Creek water	synthetic Magela Creek water	synthetic Magela Creek water	synthetic Magela Creek water	synthetic Magela Creek water	synthetic Magela Creek water									
Mode of exposure	flow-through	flow-through	flow-through	flow-through	flow-through	flow-through	flow-through	flow-through	flow-through									
Life Stage	females only	females only	males	males	shell length 13-48mm	shell length 13-48mm	shell length 48-56mm	shell length 48-56mm	shell length 56-71mm									
sion/ Species /lum	asca mussel (Velesunio angasi)	mussel (Velesunio angasi)	mussel (Velesunio angasi)	mussel (Velesunio angasi)	mussel (<i>Velesunio</i> angasi)	mussel (<i>Velesunio</i> angasi)	mussel (Velesunio angasi)	mussel (Velesunio angasi)	mussel (<i>Velesunio</i> angasi)									
Metal Divî: phy	anium Mollı																	

		et al.				
teference	farkich 2003)	ranklin 2002)	ranklin 2002)	ranklin 2002)	ranklin 2002)	ohnson (2007)
uality R core (%)	79 M	70 F (5	75 F (3	70 F (2	75 F (((7 July 20
onc Q	E	E	E	E	E	E
t of C tic ty he ^a	T	J/L	J/L	J/L	J/L	Г
Con Con	βπ ()) hmc	bmu) hmc	hmo	
Toxic conc & measure of toxicity	281 (MDEC 266 (BEC1(426 (EC50) (396-460)	0.31 (NOEC 0.57 (LOEC	1.3 (EC50) (1.2-1.4)	0.31 (NOEC 0.57 (LOEC	1.4 (EC50) (1.2-1.5)	97 (NOEC) <99 (NOEC) <99 (NOEC) 77 (NOEC) 66 (NOEC) <89 (NOEC) <89 (NOEC) 265 (LOEC) 99 (LOEC) 99 (LOEC) 164 (LOEC) 152 (LOEC) 152 (LOEC)
Duration	48(h)	48(h)	48(h)	72(h)	72(h)	72(h)
Endpoint	valve adductions	growth rate	growth rate	growth rate	growth rate	growth
Organic Carbon (mg/L)						
Alkalinity (mg CaCO ₃ /L)						
Hard- ness						
Conduct- ivity (µS/cm)						
Hd	6.0 ± 0.1	7.5	7.5	7.5	7.5	
Temp (°C)	28 ±0.1	27	27	27	27	27±1
Test medium	synthetic Magela Creek water	synthetic softwater	synthetic softwater	synthetic softwater	synthetic softwater	JM/5 medium
Mode of exposure	flow-through	static	static	static	static	static
Life Stage	shell length 56-71mm	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
Species	mussel (Velesunio angasi)	green algae (<i>Chlorella</i> sp.)				
Division/ phylum	Mollusca	Chloro- phyta				
Metal	Uranium	Zinc				

ference	107) et al.
llity Re ore 6)	2 [20] (20]
e [°] scc e ^s scc	
of Col	
Unit e toxic cone	цв/1 1/8 н
Toxic conc & measure of toxicity	102 (IC10) (35-41) (35-41) (19-255) 48 (IC10) (14-114) (14-114) (14-114) (14-114) (15-102) (15-102) (15-102) (15-102) (15-102) (15-102) (15-102) (15-102) (15-102) (15-102) (17-217) 93 (IC25) (48-306) (172-217) 93 (IC25) (48-306) (172-217) 93 (IC25) (172-217) 93 (IC25) (172-217) 105 (IC25) (162-123) (166-123) (166-123) (166-123) (166-123) (162-1
Duration	72(h)
Endpoint	growth
Organic Carbon (mg/L)	
Alkalinity (mg CaCO ₃ /L)	
Hard- ness	
Conduct- ivity (µS/cm)	
Hd	
Temp (°C)	27±1
Test medium	JM/5 medium
Mode of exposure	static
Life Stage	exponential growth phase
Species	green algae (<i>Chlorella</i> sp.)
Division/ phylum	Chloro- phyta
Metal	Zinc

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

1					
Reference	Johnson et a (2007)	Wilde et al. (2006)	Wilde et al. (2006)	Wilde et al. (2006)	Wilde et al. (2006)
Quality score (%)	72	86	86	86	86
Conc (type ^b	E	Ξ	E	E	E
Unit of toxic conc ^a	Луви	µg/L	µg/L	µg/L	µg/L
Toxic conc & measure of toxicity	121 (1C25) (87-160) (116 (1C25) (0-199) (176 (1C25) (137-214) (137-214) (137-214) (137-214) (137-214) (137-214) (242-271) (242-271) (242-271) (242-271) (163-339) (163-339) (163-332) (163	370 (MDEC) 2700 (IC50) (2600-2800)	350 (MDEC) 1680 (IC50) (1590-1770)	105 (MDEC) 970 (IC50) (920-1020)	93 (MDEC) 630 (IC50) (600-660)
Duration	72(h)	48(h)	48(h)	48(h)	48(h)
Endpoint	growth	growth	growth	growth	growth
Organic Carbon (mg/L)					
Alkalinity (mg CaCO ₃ /L)					
Hard- ness		40-48	40-48	40-48	40-48
Conduct- ivity (µS/cm)		160	160	160	160
Hd		5.5	6	6.5	٢
Temr (°C)	27±1	27	27	27	27
Test medium	JM/5 medium	synthetic freshwater	synthetic freshwater	synthetic freshwater	synthetic freshwater
Mode of exposure	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
/ Species	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)
Division	Chloro- phyta				
Metal	Zinc				

1	I		al.		
Reference	Wilde et al. (2006)	Wilde et al. (2006)	Franklin et 6 (2007)	Hyne et al. (2005)	Hyne et al. (2005)
Quality score (%)	86	86	66	06	66
Conc (type)	ε	E	Ξ	Ξ	E
Unit of toxic conc ^a	µg/L	µg/L	۲ ۳	µg/L	µg/L
Toxic conc & measure of toxicity	16 (MDEC) 160 (1C50) (148-172)	5.9 (MDEC) 52 (IC50) (44-60)	60 (IC50) (44-69) (38-74) (38-74) (52-81) (52-81) (52-81) (51-85) (51-85) (51-85) (51-85) (51-85) (51-85) (61-76) (61-76) (61-76) (62-75) (61-76) (62-75) (41-65) (41-65) (41-65)	382 (EC50) (331-433)	680 (EC50) 550 (EC50) 540 (EC50) 505(EC50) 413 (EC50) (388-437)
Duration	48(h)	48(h)	72(h)	48(h)	48(h)
Endpoint	growth	growth	growth	immobilis- ation	immobilis- ation
Organic Carbon (mg/L)					
Alkalinity (mg CaCO ₃ /L)				30	30
Hard- ness	40-48	40-48		44	44
Conduct- ivity (µS/cm)	160	160		160-180	160-180
Hq	7.5	∞		5.5	6.5
Temp (°C)	27	27	24	25±1	25±1
Test medium	synthetic freshwater	synthetic freshwater	US EPA standard medium without EDTA	synthetic softwater	synthetic softwater
Mode of exposure	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	< 24-h old neonates	< 24-h old neonates
/ Species	green algae (<i>Chlorella</i> sp.)	green algae (<i>Chlorella</i> sp.)	green algae (Pseudokirch- neriella subcapitata)	a cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)
Division. phylun	Chloro- phyta			Crustace	
Metal	Zinc			Zinc	

Reference	Hyne et al. (2005)	Hyne et al. (2005)	Hyne et al. (2005)	Hyne et al. (2005)	Cooper et al. (2009)	Cooper et al. (2009)	Cooper et al. (2009)	Cooper et al. (2009)
Quality score (%)	90	66	96	90	87	87	87	87
Conc type ^b	E	Ξ	Ε	Ε	ε	E	Е	Ξ
Unit of toxic conc ^a	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	µg/L	µg/L
Toxic conc & measure of toxicity	155 (EC50) (130-185) 200 (EC50) (186-214)	390 (ECS0) (295-510)	70 (EC50) (60-80)	160 (EC50)	13 (NOEC) 25.1 (LOEC) 21.8 (EC50) (11.5-30.3)	101.1 (NOEC) 216.4 (LOEC)	173.5 (LC50) (130.6- 232.4)	339.8 (LC50) (263.4- 438.6)
Duration	48(h)	48(h)	48(h)	48(h)	7(d)	7(d)	48(h)	48(h)
Endpoint	immobilis- ation	immobilis- ation	immobilis- ation	immobilis- ation	reproduc- tion	survival	mortality	mortality
Organic Carbon (mg/L)								
Alkalinity (mg CaCO ₃ /L)	30	30	125	125				
Hard- ness	44	374	44	374	82.4±6	82.4±6	82.4±6	82.4±6
Conduct- ivity (µS/cm)	160-180	160-180	160-180	160-180	350.2 ± 38.7	350.2 ± 38.7	350.2 ± 38.7	350.2 ± 38.7
μd	7.5	7.5	8.4	8.4	7.5 ±0.3	7.5 ±0.3	7.5 ±0.3	7.5 ±0.3
Temp (°C)	25±1	25±1	25±1	25±1	25±1	25±1	25±1	25±1
Test medium	synthetic softwater	synthetic softwater	synthetic softwater	synthetic softwater	moderately hardwater	moderately hardwater	moderately hardwater	moderately hardwater
Mode of exposure	static	static	static	static	semi-static	semi-static	static	static
Life Stage	< 24-h old neonates	< 24-h old neonates	< 24-h old neonates	< 24-h old neonates	neonate	neonate	neonate	neonate
Division/ Species phylum	Crustacea cladoceran (<i>Ceriodaphnia</i> cf <i>dubia</i>)	cladoceran (<i>Ceriodaphnia</i> áubia)	cladoceran (Ceriodaphnia dubia)	cladoceran (<i>Ceriodaphnia</i> dubia)	Cladoceran (<i>Daphnia</i> <i>carinata</i>)			
Metal	inc							

^a the concentration is always expressed as a mass of the metal per unit volume unless otherwise stated, TU = toxic units, μ mol/L = micromoles per litre, fg/cell = femtograms per cell.^b m = measured concentration, n = nominal (not measured) concentration, NR = not recorded.

Australasian metal toxicity data – IV

92

Zinc

Langdon et al

APPENDIX B

SUMMARY OF THE METAL TOXICITY DATA FOR AUSTRALASIAN MARINE/ESTUARINE BIOTA.

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp. (°C)	Salinity (‰)	Endpoint	Duration	Toxic conc & measure of toxicity	Unit of toxic conc ^a	Conc (type ^b	Quality score (%)	Reference
Cadmium	Cnidaria	coral (Acropora tenuis)	few hrs prior to spawning	static	seawater			fertilisation	5.5(h)	2000 (NOEC) 5000 (LOEC)	µg/L	E	71	Reichelt-Brushett & Harrison (2005)
Cadmium	Crustacea	amphipod (Corophium colo)	adults approx 1.1 mm long	NR	saltwater	20	34	survival	10(d)	1.0 - 3.6 (LC50) 1.9 (LC50)	mg/L	NR	65	McCready et al. (2005)
		amphipod (Paramoera walkeri)	healthy	static	filtered seawater	0±0.5		survival	4(d)	670 (LC50) (330-1420)	μg/L	NR	53	Duquesne et al. (2000)
		amphipod (Paramoera walkeri)	healthy	static	filtered seawater	0±0.5		survival	8(d)	190 (LC50) (100-340)	µg/L	NR	53	Duquesne et al. (2000)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	adults 8-10 mm long, aged 2-3 months	static	filtered seawater from Port Hacking NSW	21±1	30	survival	96(h)	<400 (NOEC) 400 (LOEC)	µg/L	E	80	King et al. (2006b)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater from Port Hacking NSW	21±1	30	survival	96(h)	2280 (LC50) (1750-3710)	μg/L	E	79	King et al. (2006b)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	juveniles <7 days old	static	filtered seawater from Port Hacking NSW	21±1	30	survival	96(h)	250 (NOEC) 510 (LOEC)	µg/L	Е	80	King et al. (2006b)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	juveniles <7 days old	static	filtered seawater from Port Hacking NSW	21±1	30	survival	96(h)	520 (LC50) (330-820)	μg/L	E	79	King et al. (2006b)

nce	t al.	t al.)	c Riddle	c Riddle	& oda (2006)	t al.	t al.
y Refere	King el (2006b	King et (2006b	King & (2001)	King & (2001)	Gorski Nugeg	Levy e (2007)	Levy e (2007)
Qualit score (%)	80	62	67	67	76	79	84
Conc type ^b	E	B	NR	NR	ц	ц	ц
Unit of toxic conc ^a	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	µg/L
Toxic conc & measure of toxicity	<400 (NOEC) 400 (LOEC)	470 (LC50) (400-540)	2000 (NOEC) 4000 (LOEC) 6940 (EC50)	<200 (NOEC) 200 (LOEC)	320 (NOEC) 1280 (LOEC) 520 (EC10) (481-576) 4515 (EC50) (4316-4821)	<0.2 (NOEC) 0.2 (LOEC)	0.6 (IC50) (0.5-0.8)
Duration	10(d)	10(d)	6-8(d)	20-23(d)	48(h)	72(h)	72(h)
Endpoint	survival	survival	embryonic development	embryonic development	development	cell division	cell division
Salinity (%o)	30	30					
Temp. (°C)	21±1	21±1	0±0.5	0±0.5	20±2	21	21
Test medium	filtered seawater from Port Hacking NSW	filtered seawater from Port NSW	filtered seawater from Casey Station Antarctica	filtered seawater from Casey Station Antarctica	seawater	filtered seawater	filtered seawater
Mode of Exposure	static	static	static	static	static	static	static
Life Stage	adults 8-10mm long, aged 2-3 months	adults 8-10mm long, aged 2-3 months	<3 hrs post fertilisation eggs	<3 hrs post fertilisation eggs	fertilised eggs	exponential growth phase	exponential growth phase
Species	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	urchin (Sterechinus neumayeri)	urchin (Sterechinus neumayeri)	abalone (Haliotis rubra)	diatom (<i>Minutocellus</i> <i>polymorphus</i>)	diatom (<i>Minutocellus</i> <i>polymorphus</i>)
Division/ phylum	Crustacea		Echino- dermata		Mollusca	Bacillario- phyta	
Metal	Cadmium		Cadmium		Cadmium	Copper	

Reference	Hogan et al. (2005a)	Hogan et al. (2005a)	Johnson et al. (2007)	Johnson et al. (2007)
Quality score (%)	62	62	68	68
Conc type ^b	NR	NR	E	E
Unit of toxic conc ^a	μg Cu/L	μg Cu/L	µg/L	μg/L
Toxic conc & measure of toxicity	21 (IC50) (18-24) 18 (IC50) (16-20)	18 (IC50) (17-20) 22 (IC50) (19-24)	10 (NOEC) 5 (NOEC) 16 (NOEC) 7 (NOEC) 6 (NOEC) 6 (NOEC) 3 (NOEC)	7 (NOEC) 6 (NOEC) 5 (NOEC) 17 (LOEC) 11 (LOEC) 29 (LOEC) 29 (LOEC) 33 (LOEC) 33 (LOEC) 14 (LOEC) 19 (LOEC) 17 (LOEC) 16 (LOEC) 16 (LOEC)
Duration	48(h)	48(h)	72(h)	72(h)
Endpoint	growth rate	growth rate	growth	growth
Salinity (%)				
Temp. (°C)	22±1	22±1	27±1	27±1
Test medium	filtered seawater from Cronulla NSW	filtered scawater from Cronulla NSW	half strength G medium	half strength G medium
Mode of Exposure	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase
Species	Diatom (Nitzschia closterium)	Diatom (Nitzschia closterium)	Diatom (Nitzschia closterium)	diatom (<i>Nitzschia</i> <i>closterium</i>)
Division/ phylum	Bacillario- phyta			
Metal	Copper			

Vol. 15, pp. 51-184, 2009

I	1	
	/ Reference	Johnson et al. (2007)
	Quality score (%)	72
	Conc type ^b	E
	Unit of toxic conc ^a	μg/L
	Toxic conc & measure of toxicity	5 (IC10) (1-12) 10 (IC10) (0-20) 14 (IC10) (10-20) 8 (IC10) (1-12) (1-12) 1 (IC10) (0-4) 9 (IC10) (0-4) (0-16) 8 (IC10) (0-16) (0-16) 8 (IC10) (7-10)
	Duration	72(h)
	Endpoint	growth
	Salinity (‰)	
	Temp. (°C)	27±1
	Test medium	G medium
	Mode of Exposure	static
	Life Stage	exponential growth phase
	Species	diatom (<i>Nitzschia</i> <i>closterium</i>)
	Division/ phylum	Bacillario- phyta
	Metal	Copper

1			
Reference	Johnson et al. (2007)	Levy et al. (2007)	Levy et al. (2009)
Quality score (%)	72	79	69
Conc type ^b	E	н	Е
Unit of toxic conc ^a	hg/L	µg/L	μg Cu/L
Toxic conc & measure of toxicity	16 (IC25) (0-49) 25 (IC25) (18-57) 10 (IC25) (7-18) 27 (IC50) (14-58) 40 (IC50) 43 (IC50) 43 (IC50) 62 (IC50) 33 (IC50) (0-37) (0-37) 12 (IC50) (6-36) (6-36) 23 (IC50) (17-33) 23 (IC50) (17-33)	4.4 (NOEC) 5.8 (LOEC) 18 (IC50) (6-30)	0.8 (NOEC) 1 (NOEC) 1 (LOEC) 1.5 (LOEC) 8 (EC50) (4-10) 7 (EC50) (6-8)
Duration	72(h)	72(h)	72(h)
Endpoint	growth	cell division	growth rate
Salinity (‰)			
Temp. (°C)	27±1	21	21
Test medium	G medium	filtered seawater	filtered seawater
Mode of Exposure	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase
Species	diatom (<i>Nitzschia</i> <i>closterium</i>)	diatom (<i>Nitzschia</i> <i>closterium</i>)	diatom (<i>Nitzschia</i> closterium)
Division/ phylum	Bacillario- phyta		
Metal	Copper		

eference	anklin et al. 004)	anklin et al. 004)	vy et al. 007)	anklin et al. 004)	anklin et al. 004)	way of ol	o07)	007) 207) 207)
uality Rescore	78 Fr (2	78 Fr (2	79 L6 (2	78 Fr (2	78 Fr (2	84 Le	(2	(2) 79 Lc (2)
Conc Q type ^b s	E	В	B	В	В	Ш		E
Unit of toxic conc ^a	µg/L	μg/L	μg/L	µg/L	µg/L	μg/L		µg/L
Toxic conc & measure of toxicity	12 (IC50) (11-14) 19 (IC50) (15-24)	13 (IC50) (11-15) 24 (IC50) (20-29)	<1.5 (NOEC) 1.5 (LOEC) 8 (IC50) (4.7-8.3)	14 (IC50) (10-20) 15 (IC50) (14-16)	16 (1C50) (13-18) 16 (1C50) (15-17)	4.8 (IC50) (3.5-7.2)	`	8 (NOEC) 42 (LOEC) 530 (IC50) (450-600)
Duration	48(h)	72(h)	72(h)	48(h)	72(h)	72(h)		72(h)
Endpoint	growth rate	growth rate	cell division	growth rate	growth rate	cell division		cell division
Salinity (‰)								
Temp. (°C)	21	21	21	21	21	21		21
Test medium	UV sterilised, filtered seawater	UV sterilised, filtered seawater	filtered seawater	UV sterilised, filtered seawater	UV sterilised, filtered seawater	filtered seawater		filtered seawater
Mode of Exposure	static	static	static	static	static	static		static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase		exponential growth phase
Species	diatom (Phaeodactylum tricornutum)	diatom (Phaeodactylum tricornutum)	diatom (Phaeodactylum tricornutum)	dinoflagellate (<i>Heterocapsa</i> <i>niei</i>)	dinoflagellate (<i>Heterocapsa</i> <i>niei</i>)	dinoflagellate (<i>Heterocapsa</i> <i>niei</i>)		green algae (Dunaliella tertiolecta)
Division/ phylum	Bacillario- phyta			Dino- flagellata				Chlorophyta
Metal	Copper			Copper			Connor	Copper

Langdon et al

Reference	Franklin et al. (2004)	Levy et al. (2007)	Levy et al. (2007)	Levy et al. (2007)	Levy et al. (2007)	Levy et al. (2007)	Levy et al. (2007)	Levy et al. (2007)	Levy et al. (2007)
Quality score (%)	78	79	62	79	79	84	79	84	62
Conc type ^b	Ξ	ц.	Ε	E	Е	E	В	E	Ξ
Unit of toxic conc ^a	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L
Toxic conc & measure of toxicity	3.1 (IC50) (2.4-4.2)	0.3 (NOEC) 0.6 (LOEC) 1.2 (IC50) (1.1-1.4)	<5 (NOEC) 4.2 (IC50) (2.4-7.5)	7 (NOEC) 22 (LOEC) 47 (IC50) (46-49)	8 (NOEC) 15 (IC50) (12-18)	9 (NOEC) 20 (IC50) (16-26)	<1 (NOEC) 1 (LOEC) 17 (IC50) (17-18)	1.3 (NOEC) 2.6 (LOEC) >25 (IC50)	<1.1 (NOEC) 1.1 (LOEC) 4 (IC50) (3.8-4.2)
Duration	72(h)	72(h)	72(h)	72(h)	72(h)	72(h)	72(h)	72(h)	72(h)
Endpoint	growth rate	cell division	cell division	cell division	cell division	cell division	cell division	cell division	cell division
Salinity (‰)									
Temp. (°C)	21	21	27	21	21	21	21	21	27
Test medium	UV sterilised, filtered seawater	filtered seawater	filtered seawater	filtered seawater	filtered seawater	filtered seawater	filtered seawater	filtered seawater	filtered seawater
Mode of Exposure	static	static	static	static	static	static	static	static	static
Life Stage	exponential growth phase	exponential growth phase	exponential growth phase	exponential growth phase	exp growth phase with coccoliths	exp growth phase without coccoliths	exp growth phase with coccoliths	exp growth phase without coccoliths	exponential growth phase
Species	green flagellate (Micromonas pusilla)	green flagellate (<i>Micromonas</i> <i>pusilla</i>)	green flagellate (<i>Proteomonas</i> sulcata)	green flagellate (Tetraselmis sp.)	haptophyte (Emiliania huxleyi)	haptophyte (Emiliania huxleyi)	haptophyte (<i>Gephyrocapsa</i> oceanica)	haptophyte (Gephyrocapsa oceanica)	haptophyte (Isochrysis sp.)
Division/ phylum	Chlorophyta				Prynnesio- phyta				
Metal	Copper				Copper				

Matal	Division/	Sussian	I ifa Ctana	Madaaf	too F	Ľ	Colliniter	Pudnoint	Durotion	Taria anna P	IIt. af	Como C		Defenence
Metal	Division/ phylum	species	Lille Stage	Mode of Exposure	ı est medium	(°C)	531111LY (%0)	Enapoint	Duration	1 oxic conc & measure of toxicity	to the toxic conc ^a	type ^b	zuanty score (%)	Kelerence
Copper	Annelida	flatworm (Phrikoceros baibaiye)	adults	semi-static	unfiltered seawater	19.5±3	37±3	mortality	96(h)	15 (NOEC) 20 (NOEC) 11 (NOEC) 28 (LOEC) 40 (LOEC) 45 (LOEC)	µg/L	Ξ	80	Hughes et al. (2005)
		flatworm (Phrikoceros baibaiye)	adults	semi-static	unfiltered seawater	19.5±3	37±3	mortality	96(h)	16 (LC50) (10-25) 17 (LC50) (12-24) 14 (LC50) (7-29)	μg/L	Е	85	Hughes et al. (2005)
		worm (Australonereis ehlersi)	adults	NR	seawater			survival	4(d)	140 (LOEC)	mg/kg	NR	39	Simpson (2005)
		worm (Spirorbis nordenskjoldi)	healthy, attached to algae	semi-static	seawater	0.5		behaviour	10(d)	11 (NOEC) 24 (LOEC) 20 (EC50) (17-24)	µg/L	E	70	Hill et al. (2009)
		worm (Spirorbis nordenskjoldi)	healthy, attached to algae	semi-static	seawater	0.5		mortality	10(d)	215 (NOEC) 365 (LOEC) 570 (LC50) (420-1100)	µg/L	Ξ	70	Hill et al. (2009)
Copper	Bryozoa	bryozoan (Bugula neritina)	larvae	static	filtered seawater	21±0.4	<u>.</u>	%attachment	12(d)	50 (NOEC) 50 (NOEC) 100 (LOEC) 100 (LOEC)	µg/L	E	75	Piola & Johnston (2006)
		bryozoan (Bugula neritina)	larvae	static	filtered seawater	21±0.4		growth	12(d)	50 (NOEC) 50 (NOEC) 50 (NOEC) 50 (NOEC) 100 (LOEC) 100 (LOEC) 100 (LOEC) 100 (LOEC)	μg/L	E	75	Piola & Johnston (2006)

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Langdon et al

lasian met	tal toxicity data – IV					Lang
Reference	Piola & Johnston (2006)	Piola & Johnston (2006)	Reichelt-Brushett & Harrison (2005)	Reichelt-Brushett & Harrison (2000)	Reichelt-Brushett & Harrison (2005)	Reichelt-Brushett & Harrison (2005)
Quality score (%)	75	75	77	77	71	71
Conc type ^b	Ш	E	B	H	В	E
Unit of toxic conc ^a	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
Toxic conc & measure of toxicity	50 (NOEC) 50 (NOEC) 50 (NOEC) 50 (NOEC) 50 (NOEC) 25 (NOEC) 100 (LOEC)	100 (LOEC) 50 (LOEC) 100 (LOEC) 100 (LOEC) 100 (LOEC)	15.3 (NOEC) 23.6 (LOEC) 15.2 (EC50) (12-19.2)	17.3 (NOEC) 42 (LOEC) 35 (EC50) (32-37)	33.5 (NOEC) 41.9 (LOEC) 39.7 (EC50) (36-43.7)	10 (NOEC) 12.8 (NOEC) 20.4 (LOEC) 20 (LOEC) 18.5 (EC50) (12-19.2) 24.7 (EC50) (15.5-30)
Duration	12(d)	12(d)	5.5(h)	48(h)	5.5(h)	5.5(h)
Endpoint	survival	survival	fertilisation	% settlement	fertilisation	fertilisation
Salinity (‰)						
Temp. (°C)	21±0.4	21±0.4				
Test medium	filtered seawater	filtered seawater	seawater	seawater	seawater	scawater
Mode of Exposure	static	static	static	static	static	static
Life Stage	larvae	larvae	few hrs prior to spawning	larvae 5 days after fert.	few hrs prior to spawning	few hrs prior to spawning
Species	bryozoan (Bugula neritina)	bryozoan (Bugula neritina)	coral (Acropora longicyathus)	coral (Acropora tenuis)	coral (Acropora tenuis)	coral (Goniastrea aspera)
Division/ phylum	Bryozoa		Cnidaria			
Metal	Copper		Copper			

rence	nes et al. 5)	nes et al. 5)	helt-Brushett ichalek- ner (2005)	helt-Brushett ichalek- ner (2005)	son (2005)	son (2005)	et al. 5a)	, et al. 5a)	son (2005)	son (2005)
y Refe	Hugl (200:	Hugł (200:	Reicl & M Wagı	Reic) & M Wagi	Simp	Simp	King (2004	King (200	Simp	Simp
Quality score (%)	80	85	99	66	39	44	69	75	39	44
Conc type ^b	Е	н	Е	Е	NR	NR	H	Ξ	NR	NR
Unit of toxic conc ^a	μg/L	µg/L	µg/L	µg/L	mg/kg	mg/L	μg Cu/L	μg Cu/L	mg/kg	mg/L
Toxic conc & measure of toxicity	207 (NOEC) 160 (NOEC) 629 (LOEC) 265 (LOEC)	182 (LC50) (118-279) 347 (LC50)	69 (NOEC) 36 (NOEC) 69 (LOEC)	117 (LOEC) 261 (EC50)	1800 (LOEC) 0.12 (LOEC)	2.1 (LC50)	950 (NOEC) >950 (LOEC)	>950 (LC50)	200 (LOEC)	0.28 (LC50) (0.1-0.4)
Duration	96(h)	96(h)	NR	NR	4(d)	4(d)	10(d)	10(d)	4(d)	4(d)
Endpoint	mortality	mortality	fertilisation	fertilisation	survival	survival	survival	survival	survival	survival
Salinity (‰)	37±3	37±3								
Temp. (°C)	19.5±3	19.5±3					21±1	21±1		
Test medium	unfiltered seawater	unfiltered seawater	seawater	seawater	seawater	seawater	filtered seawater	filtered seawater	seawater	seawater
Mode of Exposure	semi-static	semi-static	static	static	NR	NR	static	static	NR	NR
Life Stage	adults	adults	mature 35-50cm diameter	mature 35-50cm diameter	adults	adults	adults 8-10mm long, aged 2-3 months	adults 8-10mm long, aged 2-3 months	adults	adults
Species	sea anemone (<i>Actinia</i> sp.)	sea anemone (Actinia sp.)	soft coral (Lobophytum compactum)	soft coral (Lobophytum compactum)	amphipod (<i>Corophium colo</i>)	amphipod (<i>Corophium colo</i>)	amphipod (Corophium colo)	amphipod (<i>Corophium colo</i>)	amphipod (<i>Corophium</i> <i>insidiosum</i>)	amphipod (Corophium insidiosum)
Division/ phylum	Cnidaria				Crustacea					
Metal	Copper				Copper					

Langdon et al

Quality Reference score (%)	53 Duquesne et al.(2000)	53 Duquesne et al.(2000)	66 Liess et al. (2001)	66 Liess et al. (2001)	66 Liess et al. (2001)	75 King et al. (2006a)	75 King et al. (2006a)
Conc type ^b	NR	NR	ц	E	g	E	E
Unit of toxic conc ^a	µg/L	µg/L	µg/L	µg/L	µg/L	µg Cu/L	µg Cu/L
Toxic conc & measure of toxicity	970 (LC50) (530-1910)	290 (LC50) (150-510)	100 (NOEC) 970 (LC50)	100 (NOEC) 100 (NOEC) 21 (LOEC) 100 (LOEC)	100 (NOEC) 100 (NOEC) 45.7 (LOEC) 3 (LOEC)	90 (NOEC) 190 (LOEC) >190 (LC50)	<100 (NOEC) <100 (NOEC) 100 (LOEC) >100 (LOEC) >100 (LOEC)
Duration	4(d)	8(d)	4(d)	12(d)	21(d)	10(d)	96(h)
Endpoint	survival	survival	survival	survival	survival	survival	survival
Salinity (%0)							
Temp. (°C)	0±0.5	0±0.5	$^{-1.25}_{\pm 0.2}$	-1.25 ± 0.2	-1.25 ± 0.2	21±1	21±1
Test medium	filtered seawater	filtered seawater	filtered seawater from Casey Station Antarctica	filtered seawater from Casey Station Antarctica	filtered seawater from Casey Station Antarctica	filtered seawater	filtered seawater
Mode of Exposure	static	static	semi-static	semi-static	semi-static	static	static
Life Stage	healthy	healthy	healthy	healthy	healthy	adults 8-10mm long, aged 2-3 months	juveniles <7 days old
Species	amphipod (Paramoera walkeri)	amphipod (Paramoera walkeri)	amphipod (Paramoera walkeri)	amphipod (Paramoera walkeri)	amphipod (Paramoera walkeri)	estuarine amphipod (<i>Hyale</i> <i>crassicornis</i>)	estuarine amphipod (<i>Hyale</i> <i>crassicornis</i>)
Division/ phylum	Crustacea						
Metal	Copper						

Matal	Division/	Curator	1 160 64000	Madaaf	Tact	Tours	Colinite.	Pudnoîn4	Dunotion	Toute and 0	J. 111	0400	lite.	Dafauanaa
Metal	phylum	species	Luie Stage	Exposure	nedium	(°C)	231111y (%0)	Ellapolit	Durauon	notic conc & measure of toxicity	toxic conc ^a	type ^b	yuaniy score (%)	Kelerence
Copper	Crustacea	gammarid amphipod (<i>Melita awa</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater	21±1		survival	10(d)	80 (NOEC) 150 (LC50) (120-190)	μg Cu/L	В	75	King et al. (2006a)
		gammarid amphipod (<i>Melita awa</i>)	juveniles <7 days old	static	filtered seawater	21±1		survival	96(h)	<40 (NOEC)40 (LOEC)120 (LC50)(98-120)	μg Cu/L	E	75	King et al. (2006a)
		gammarid amphipod (<i>Melita matilda</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater	21±1		survival	10(d)	120 (NOEC) 220 (LC50) (200-240)	μg Cu/L	E	75	King et al. (2006a)
		gammarid amphipod (<i>Melita matilda</i>)	juveniles <7 days old	static	filtered seawater	21±1		survival	96(h)	50 (NOEC) 100 (LOEC) 180 (LC50) (150-210)	μg Cu/L	Е	75	King et al. (2006a)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater	21±1		survival	10(d)	80 (NOEC) 170 (LOEC) 180 (LC50) (40-260)	µg Cu/L	E	75	King et al. (2006b)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	juveniles <7 days old	static	filtered seawater	21±1		survival	96(h)	50 (NOEC) 90 (LOEC) 120 (LC50)	μg Cu/L	E	75	King et al. (2006b)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater from Port NSW	21±1	30	survival	96(h)	340 (NOEC) >340 (LOEC) >340 (LC50)	µg/L	Ξ	80	King et al. (2006b)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater			survival	10(d)	80 (NOEC)	μg Cu/L	E	69	Simpson & King (2005)

Langdon et al

	Xing	ζing	05)	05)		_:
Reference	Simpson & I (2005)	Simpson & I (2005)	Simpson (20	Simpson (20	2008) (2008)	Spadaro et a (2008)
Quality score (%)	73 5	75 5	39	44	71	71 5
Conc (type ^b	ш	E	NR	NR	E	E
Unit of toxic conc ^a	μg Cu/g tissue	μg Cu/L	mg/kg	mg/L	Лудц	µg/L
Toxic conc & measure of toxicity	198 (LBC50) 235 (LBC50) 207 (LEC50)	180 (LC50) (30-260)	160 (LOEC) 0.34 (LOEC)	0.47 (LC50) (0.39-0.62)	99 (NOEC) 156 (NOEC) 83 (NOEC) 100 (NOEC) 187 (LOEC) 240 (LOEC) 156 (LOEC) 99 (LOEC) 99 (LOEC) 190 (LC50) 190 (LC50) 220 (LC50) 220 (LC50) 220 (LC50)	36 (NOEC) <20 (NOEC) 64 (LOEC) 20 (LOEC) 76 (LC50) 36 (LC50)
Duration	10(d)	10(d)	4(d)	4(d)	4(d)	10(d)
Endpoint	survival	survival	survival	survival	body length	body length
Salinity (%º)						
Temp. (°C)					21	21
Test medium	filtered seawater	filtered seawater	seawater	seawater	filtered seawater	filtered seawater
Mode of Exposure	static	static	NR	NR	static	static
Life Stage	adults 8-10mm long, aged 2-3 months	adults 8-10mm long, aged 2-3 months	adults	adults	11 days old	11 days old
Species	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)				
Division/ phylum	Crustacea					
Metal	Copper					

	al.	al.	al.	al.	al.		al.
Reference	Spadaro et (2008)	King et al. (2006a)	Hughes et ((2005)				
Quality score (%)	71	71	71	71	71	75	80
Conc type ^b	E	E	E	Ε	Ε	E	E
Unit of toxic conc ^a	μg/L	µg/L	μg/L	µg/L	µg/L	μg Cu/L	μg/L
Toxic conc & measure of toxicity	118 (NOEC) 59 (LOEC) 230 (LC50) (201-259)	290 (NOEC) 130 (LOEC) 308 (LC50) (231-385)	313 (NOEC) 146 (LOEC) 470 (LC50) (360-580)	75 (NOEC) 44 (LOEC) 120 (LC50) (116-124)	57 (NOEC) <57 (LOEC) 182 (LC50)	90 (NOEC) 190 (LOEC) 250 (LC50) (120-410)	85 (NOEC) 50 (NOEC) 80 (NOEC) 125 (LOEC) 125 (LOEC) 205 (LOEC) 128 (1 C50)
Duration	4(d)	4(d)	4(d)	4(d)	4(d)	10(d)	96(h)
Endpoint	body length	survival	mortality				
Salinity (‰)							37±3ppt
Temp. (°C)	21	21	21	21	21	21±1	19.5±3
Test medium	filtered seawater	filtered seawater	filtered seawater	filtered seawater	filtered seawater	filtered seawater	unfiltered seawater
Mode of Exposure	static	static	static	static	static	static	semi-static
Life Stage	14 days old	18 days old	30 days old	5 days old	8 days old	adults 8-10mm long, aged 2-3 months	adults
Species	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	Scud (Grandidierella japonica)	shrimp (Alope orientalis)				
Division/ phylum	Crustacea						
Metal	Copper						

Langdon et al

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp. (°C)	Salinity (‰)	Endpoint	Duration	Toxic conc & measure of toxicity	Unit of toxic conc ^a	Cone (type ^b	Quality score (%)	Reference
Copper	Crustacea	shrimp (Alope orientalis)	adults	semi-static	unfiltered seawater	19.5±3	37±3ppt	mortality	96(h)	54 (LC50) (31-93) 86 (LC50) (63-118)	μg/L	E	80	Hughes et al. (2005)
Copper	Echino- dermata	urchin (Sterechinus neumayeri)	<3 hrs post fertilisation eggs	static	filtered seawater from Casey Station Antarctica	0±0.5	-	embryonic development	20-23(d)	 <2 (NOEC) 8 (NOEC) 12 (LOEC) 2 (LOEC) 1.4 (EC50) 	µg/L	NR	67	King & Riddle (2001)
		urchin (Sterechinus neumayeri)	<3 hrs post fertilisation eggs	static	filtered seawater ffrom Casey Station Antarctica	0±0.5	-	embryonic development	6-8(d)	11.4 (EC50)	µg/L	NR	68	King & Riddle (2001)
Copper	Mollusca	abalone (Haliotis rubra)	fertilised eggs	static	seawater	20±2	-	development	48(h)	1 (NOEC) 4 (LOEC) 3.7 (EC10) (3.5-3.8)	µg/L	с г	76	Gorski & Nugegoda (2006)
		abalone (Haliotis rubra)	fertilised eggs	static	seawater	20±2	-	development	48(h)	7.1 (EC50) (6.7-7.5)	µg/L	ц	76	Gorski & Nugegoda (2006)
		bivalve (Mysella anomala)	40mm long	static	filtered seawater		30-31	survival	96(h)	480 (NOEC) 140 (NOEC) 900 (LOEC) 180 (LOEC)	µg/L	E	66	King et al. (2004)
		bivalve (Mysella anomala)	40mm long	static	filtered seawater		30-31	survival	96(h)	1500 (LC50) (1300-1800) 210 (LC50) (200-220)	µg/L	E	71	King et al. (2004)
		bivalve (<i>Mysella</i> anomala)	adults	NR	seawater			survival	4(d)	900 (LOEC) 180 (LOEC) 90 (LOEC)	mg/kg	NR	39	Simpson (2005)

Langdon et al

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp. (°C)	Salinity (‰)	Endpoint	Duration	Toxic conc & measure of toxicity	Unit of toxic conc ^a	Conc (type ^b	Quality score (%)	Reference
Lead	Annelida	worm (Spirorbis nordenskjoldi)	healthy, attached to algae	semi-static	seawater	0.5		mortality	10(d)	>2905 (NOLC)	μg/L	Ħ	70	Hill et al. (2009)
Lead	Cnidaria	coral (Acropora longicyathus)	few hrs prior to spawning	static	scawater			fertilisation	5.5(h)	451 (NOEC) 855 (LOEC) 1453 (EC50) (1156-1780)	µg/L	В	77	Reichelt-Brushett & Harrison (2005)
		coral (Acropora tenuis)	few hrs prior to spawning	static	seawater			fertilisation	5.5(h)	790 (NOEC) 1982 (LOEC) 1801 (EC50) (1352-2400)	µg/L	н	77	Reichelt-Brushett & Harrison (2005)
		coral (Goniastrea aspera)	few hrs prior to spawning	static	seawater			fertilisation	5.5(h)	5455 (NOEC) 6409 (LOEC) 2467 (EC50) (691-8807)	µg/L	E	77	Reichelt-Brushett & Harrison (2005)
Lead	Crustacea	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater from Port Hacking NSW	21±1	30	survival	96(h)	850 (NOEC) 1680 (LOEC) 3000 (LC50) (2580-3560)	µg/L	E	80	King et al. (2006b)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	juveniles <7 days old	static	filtered seawater from Port Hacking NSW	21±1	30	survival	96(h)	400 (NOEC) 600 (LOEC) 1530 (LC50)	µg/L	В	80	King et al. (2006b)
		gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater from Port Hacking NSW	21±1	30	survival	10(d)	190 (NOEC) 390 (LOEC) 1270 (LC50) (940-1550)	µg/L	E	80	King et al. (2006b)

Langdon et al

		(9	(9)	ett			
/ Reference	King & Riddle (2001)	Gorski & Nugegoda (200	Gorski & Nugegoda (200	Reichelt-Brushe & Harrison (2005)	King et al. (2006b)	King et al. (2006b)	King et al. (2006b)
Quality score (%)	67	76	76	71	80	80	80
Conc type ^b	NR	E	a	В	E	E	E
Unit of toxic conc ^a	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L
Toxic conc & measure of toxicity	3200 (NOEC) >3200 (LOEC)	320 (NOEC) 1280 (LOEC) 3718 (EC10) (3650-4159) 4102 (EC50) (3891-4398)	8 (NOEC) 16 (LOEC) 11.9 (EC10) (4.7-16.1) 19.8 (EC50) (14-28)	5 (NOEC) 100 (LOEC)	4310 (NOEC) 8660 (LOEC) 16800 (LC50) (13900-22800)	860 (NOEC) 1730 (LOEC) 2430 (LC50) (1760-3090)	2130 (NOEC) 4280 (LOEC) 2590 (LC50) (2030-3050)
Duration	20-23(d)	48(h)	48(h)	5.5(h)	96(h)	96(h)	10(d)
Endpoint	embryonic development	development	development	fertilisation	survival	survival	survival
Salinity (%0)					30		30
Temp. (°C)	0±0.5	20±2	20±2		21±1	21±1	21±1
Test medium	filtered seawater from Casey Station Antarctica	seawater	seawater	seawater	filtered seawater from Port NSW	filtered seawater from Port NSW	filtered seawater from Port Hacking NSW
Mode of Exposure	static	static	static	static	static	static	static
Life Stage	3 hrs post fertilisation eggs	fertilised eggs	fertilised eggs	few hrs prior to spawning	adults 8-10mm long, aged 2-3 months	juveniles <7 days old	adults 8-10mm long, aged 2-3 months
Species	urchin (Sterechinus neumayeri)	abalone (Haliotis rubra)	abalone (Haliotis rubra)	coral (<i>Goniastrea</i> <i>aspera</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)
Division/ phylum	Echino- dermata	Mollusca	Mollusca	Cnidaria	Crustacea		
Metal	Lead	Lead	Mercury	Nickel	Nickel		

Langdon et al

lce	l et al.	l et al.
y Referen	Johnsor (2007)	Johnson (2007)
Qualit score (%)	68	72
Conc type ^b	E	Ξ
Unit of toxic conc ^a	μg/L	μg/L
Toxic conc & measure of toxicity	66 (NOEC) <89 (NOEC) <99 (NOEC) 85 (NOEC) 120 (NOEC) 77 (NOEC) 77 (NOEC) 62 (NOEC) 143 (LOEC) 164 (LOEC) 164 (LOEC) 166 (LOEC) 156 (LOEC) 265 (LOEC) 99 (LOEC) 89 (LOEC) 172 (LOEC) 145 (LOEC)	31 (JC10) (21-47) 42 (12-10) (15-102) 37 (JC10) (19-35)
Duration	72(h)	72(h)
Endpoint	growth	growth
Salinity (‰)		
Temp. (°C)	27±1	27±1
Test medium	half strength G medium	half strength G medium
Mode of Exposure	static	static
Life Stage	exponential growth phase	exponential growth phase
Species	diatom (<i>Nitzschia</i> <i>closterium</i>)	diatom (<i>Nitzschia</i> <i>closterium</i>)
Division/ phylum	Bacillario- phyta	
Metal	Zinc	

Langdon et al

ence	on et al.	on et al.
y Refer	Johns (2007	Johns (2007
Qualit score (%)	72	72
Conc type ^b	E	ε
Unit of toxic conc ^a	μg/L	μg/L
Toxic conc & measure of toxicity	84 (IC10) 87 (IC10) (28-119) 67 (IC10) (0-142) 52 (IC10) 48 (IC10) 48 (IC10) 14-114) (14-114) (14-114) 273 (IC50) 146 (IC25) 121 (IC25) (87-160) 176 (IC25) (137-214)	105 (IC25) (36-123) 142 (IC25) 116 (IC25) (0-199) 142 (IC25) 93 (IC25) 93 (IC25) (48-306) (48-306) (48-306) (48-306) (163-339) 364 (IC50) (163-3339) 364 (IC50) (163-3339) 364 (IC50) (126-232) 194 (IC50) (126-232) 194 (IC50) (112-312) 275 (IC50) (123-333) (123
Duration	72(h)	72(h)
Endpoint	growth	growth
Salinity (%0)		
Temp. (°C)	27±1	27±1
Test medium	G medium	la strength G medium
Mode of Exposure	static	static
Life Stage	exponential growth phase	exponential growth phase
Species	diatom (<i>Nitzschia</i> closterium)	diatom (<i>Nitzschia</i> closterium)
Division/ phylum	Bacillario- phyta	
Metal	Zinc	

Langdon et al

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp. (°C)	Salinity (%0)	Endpoint	Duration	Toxic conc & measure of toxicity	Unit of toxic conc ^a	Conc (type ^b	Quality score (%)	Reference
Zinc	Annelida	worm (Spirorbis nordenskjoldi)	healthy, attached to algae	semi-static	seawater	0.5		health	10(d)	1660 (LOEC) 770 (NOEC) 1210 (EC50) (900-1470)	µg/L	E	70	Hill et al. (2009)
		worm (Spirorbis nordenskjoldi)	healthy, attached to algae	semi-static	seawater	0.5		mortality	10(d)	>4910 (NOLC)	µg/L	Ξ	70	Hill et al. (2009)
Zinc	Cnidaria	coral (Acropora tenuis)	few hrs prior to spawning	static	seawater			fertilisation	5.5(h)	<10 (NOEC) 10 (LOEC)	µg/L	В	71	Reichelt-Brushett & Harrison (2005)
Zinc	Crustacea	amphipod (Chaetocoro- phium cf. lucasi)	juveniles <7 days old	static	filtered seawater	21±1		survival	96(h)	380 (NOEC) 760 (LOEC) 1130 (LC50) (870-1390)	µg Zn/L	Ħ	75	King et al. (2006a)
		amphipod (Corophium colo)	adults 8-10mm long, aged 2-3 months	static	filtered seawater	21±1		survival	10(d)	4500 (NOEC) >4500 (LOEC) >4500 (LC50)	µg Zn/L	E	75	King et al. (2006a)
		amphipod (Grandidieralla japonica)	adults 8-10mm long, aged 2-3 months	static	filtered seawater	21±1		survival	10(d)	630 (NOEC) 1280 (LOEC) 1560 (LC50) (1090-2010)	J/uZ Bri	E	69	King et al. (2006a)
		estuarine amphipod (<i>Hyale</i> <i>longicornis</i>)	juveniles <7 days old	static	filtered seawater	21±1		survival	96(h)	500 (NOEC) >500 (LOEC) >500 (LC50)	µg Zn/L	B	75	King et al. (2006a)
		estuarine amphipod (<i>Hyale</i> <i>longicornis</i>)	adults 8-10mm long, aged 2-3 months	static	filtered seawater	21±1		survival	10(d)	970 (NOEC) 1940 (LOEC) >1940 (LC50)	µg Zn/L	Ħ	75	King et al. (2006a)
		gammarid amphipod (<i>Melita</i> awa)	juveniles <7 days old	static	filtered seawater	21±1		survival	96(h)	440 (NOEC) 650 (LOEC) 710 (LC50) (470-960)	µg Zn/L	E	75	King et al. (2006a)

lasian me	tal toxicity dat	a – IV					
Reference	King et al. (2006a)	King et al. (2006a)	King et al. (2006a)	King et al. (2006a)	King et al. (2006b)	King et al. (2006a)	King et al. (2006a)
Quality score (%)	75	75	75	80	80	80	69
Conc type ^b	E	Е	В	В	E	E	E
Unit of toxic conc ^a	μg Zn/L	µg Zn/L	µg Zn/L	µg/L	µg/L	µg/L	μg Zn/L
Toxic conc & measure of toxicity	480 (NOEC) 710 (LC50) (570-830)	<240 (NOEC) 240 (LOEC) 650 (LC50) (90-1450)	230 (NOEC) 470 (LOEC) 730 (LC50) (560-890)	<pre><520 (NOEC) 520 (LOEC) 900 (LC50) (750-1020)</pre>	1530 (NOEC) 2070 (LOEC) 3530 (LC50) (2820-5740)	250 (NOEC) 500 (LOEC) 640 (LC50) (390-910)	<520 (NOEC) 520 (LOEC) 900 (LC50) 756-1020)
Duration	10(d)	96(h)	10(d)	10(d)	96(h)	96(h)	10(d)
Endpoint	survival	survival	survival	survival	survival	survival	survival
Salinity (‰)				30	30	30	
Temp. (°C)	21±1	21±1	21±1	21±1	21±1	21±1	$21{\pm}1$
Test medium	filtered seawater	filtered seawater	filtered seawater	filtered seawater from Port Hacking NSW	filtered seawater from Port Hacking NSW	filtered seawater from Port Hacking NSW	filtered seawater
Mode of Exposure	static	static	static	static	static	static	static
Life Stage	adults 8-10mm long, aged 2-3 months	juveniles <7 days old	adults 8-10mm long, aged 2-3 months	adults 8-10mm long, aged 2-3 months	adults 8-10mm long, aged 2-3 months	juveniles <7 days old	adults 8-10mm long, aged 2-3 months
Species	gammarid amphipod (<i>Melita awa</i>)	gammarid amphipod (<i>Melita matilda</i>)	gammarid amphipod (<i>Melita matilda</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)	gammarid amphipod (<i>Melita</i> <i>plumulosa</i>)
Division/ phylum	Crustacea						
Metal	Zinc						

erence	z & Riddle	g & Riddle 1)	ski & egoda (2006)	ski & egoda (2006)	g et al. (2004)	g et al. (2004)	ç et al. (2004)	g et al. (2004)
y Refe	King (200	King (200	Gors Nug	Gors Nug	King	King	King	King
Qualit score (%)	67	67	76	76	66	66	66	66
Conc type ^b	NR	NR	ц	ц	Ξ	E	E	В
Unit of toxic conc ^a	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L
Toxic conc & measure of toxicity	160 (NOEC) 320 (LOEC) 326.8 (EC50)	800 (NOEC) 1200 (LOEC) 2230 (EC50)	8 (NOEC) 16 (LOEC) 20.4 (EC10) (18.5-21.9)	42.3 (EC50) (38.5-46.2)	<200 (NOEC) 2000 (LOEC) 4500 (LC50) (3800-5400)	5800 (NOEC) >5800 (LOEC) >5800 (LC50)	1700 (NOEC) 2300 (LOEC) 2900 (LC50) (2700-3100)	970 (NOEC) >970 (LOEC) >970 (LOEC)
Duration	20-23(d)	6-8(d)	48(h)	48(h)	96(h)	96(h)	96(h)	96(h)
Endpoint	embryonic development	embryonic development	development	development	survival	survival	survival	survival
Salinity (‰)					30-31	30-31	30-31	30-31
Temp. (°C)	0±0.5	0±0.5	20±2	20±2				
Test medium	filtered seawater from Casey Station Antarctica	filtered seawater from Casey Station Antarctica	seawater	seawater	filtered seawater	filtered seawater	filtered seawater	filtered seawater
Mode of Exposure	static	static	static	static	static	static	static	static
Life Stage	<3 hrs post fertilisation eggs	<3 hrs post fertilisation eggs	fertilised eggs	fertilised eggs	4-5mm long	40mm long	15-20mm long	15-20mm long
Species	urchin (Sterechinus neumayeri)	urchin (Sterechinus neumayeri)	abalone (Haliotis rubra)	abalone (Haliotis rubra)	bivalve (<i>Mysella</i> anomala)	bivalve (<i>Mysella</i> anomala)	bivalve (Soletellina alba)	bivalve (Tellina deltoidalis)
Division/ phylum	Echino- dermata		Mollusca					
Metal	Zinc		Zinc					

^a the concentration is always expressed as a mass of the metal per unit volume unless otherwise stated. ^b m = measured concentration, n = nominal (not measured) concentration, NR = not recorded.

Langdon et al

APPENDIX C

SUMMARY OF THE METAL TOXICITY DATA FOR AUSTRALASIAN SEDIMENT BIOTA.

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
Cadmium	Crustacea	amphipod (Melita plumulosa)	juveniles <7 days old	Static	sediment and filtered seawater	21±1	survival	10(d)	>820 (EC50)	mg/kg	Е	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment and filtered seawater	21±1	growth	10(d)	>820 (EC20)	mg/kg	В	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	growth	42(d)	>630 (EC20)	mg/kg	E	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	survival	42(d)	>630 (EC50)	mg/kg	E	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	gravidity	42(d)	>630 (EC50)	mg/kg	E	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	fertility	42(d)	>630 (EC50)	mg/kg	Е	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	1630 (LC50)	mg/kg	Е	80	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	620 (NOEC) 820 (LOEC)	mg/kg	Е	LL LL	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	>260 (LC50)	mg/kg	E	80	King et al. (2006a)
		amphipod (Melita plumulosa)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	260 (NOEC) >260 (LOEC)	mg/kg	Ξ	77	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	fecundity	12(d)	~9 (EC50)	mg/kg	Е	69	Mann et al. (2009)
		amphipod (<i>Melita plumulosa</i>)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	fecundity	12(d)	~6 (EC50)	mg/kg	E	69	Mann et al. (2009)

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
Copper	Bacillariophyta	diatom (<i>Entomoneis</i> cf. <i>punctulata</i>)	adults	NR	marine sediments	NR	survival	10(d)	850 (LC50)	mg/kg	NR	44	Simpson (2005)
Copper	Annelida	worm (Australonereis ehlersi)	40mm long	Static	sediment and filtered seawater	NR	survival	10(d)	1300 (<lc10)< td=""><td>µg/L</td><td>Ε</td><td>71</td><td>King et al. (2004)</td></lc10)<>	µg/L	Ε	71	King et al. (2004)
		worm (Australonereis ehlersi)	adults	NR	marine sediments	NR	survival	10(d)	1150 (LC50)	mg/kg	NR	44	Simpson (2005)
		worm (Australonereis ehlersi)	adults	NR	seawater and marine sediment	NR	survival	10(d)	380 (LEC50)	mg/kg tissue	NR	44	Simpson (2005)
		worm (Nephtys australiensis)	40mm long	Static	sediment and filtered seawater	NR	survival	10(d)	1300 (<lc10)< td=""><td>μg/L</td><td>В</td><td>71</td><td>King et al. (2004)</td></lc10)<>	μg/L	В	71	King et al. (2004)
		worm (Nephtys australiensis)	adults	NR	seawater and marine sediment	NR	survival	10(d)	380 (LEC50)	mg/kg tissue	NR	44	Simpson (2005)
		worm (Nephtys australiensis)	adults	NR	marine sediments	NR	survival	10(d)	2000 (LC50)	mg/kg	NR	44	Simpson (2005)
		worm (Austriella cf. plicifera)	shell length l cm	Static	sediment and filtered seawater	21	reburial	10(d)	389 (ET50) (358-423) 145 (ET50) (123-170) 87.1 (ET50) (82-92) 115 (ET50) (107-123) 138 (ET50) (130-146) (130-146) (108-123)	ы П П	Ξ	70	Hutchins et al. (2008)

fe St
filte
Static uncor n long, sedir 3 Boy S
es Static unco s old satic Bo Bo
n long, Static unco 3 Bo 5 Bo
es Static uno s old sed B
NR

Vol. 15, pp. 51-184, 2009

Langdon et al

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
Copper	Crustacea	amphipod (<i>Corophium colo</i>)	adults	NR	seawater and marine sediment	NR	survival	10(d)	420 (LEC50)	mg/kg tissue	NR	44	Simpson (2005)
		amphipod (Corophium insidiosum)	adults	NR	marine sediments	NR	survival	10(d)	1500 (LC50)	mg/kg	NR	44	Simpson (2005)
		amphipod (<i>Corophium</i> insidiosum)	adults	NR	seawater and marine sediment	NR	survival	10(d)	250 (LEC50)	mg/kg tissue	NR	44	Simpson (2005)
		amphipod (<i>Melita awa</i>)	juveniles <7 days old	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	1300 (LC98)	mg Cu/kg	L	75	King et al. (2006a)
		amphipod (<i>Melita awa</i>)	adults 8-10mm long, aged 2-3 months	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	1300 (LC88)	mg Cu/kg	Ľ	75	King et al. (2006a)
		amphipod (Melita matilda)	adults 8-10mm long, aged 2-3 months	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	1300 (LC05)	mg Cu/kg	u	75	King et al. (2006a)
		amphipod (Melita matilda)	juveniles <7 days old	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	1300 (LC75)	mg Cu/kg	u	75	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21 ± 1	fertility	42(d)	250 (NOEC) 440 (LOEC)	mg/kg	E	78	Gale et al. (2006)
		amphipod (Melita plumulosa)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21 ± 1	fertility	42(d)	290 (EC50) (230-340) 330 (EC50) (280-350) 328 (EC50)	mg/kg	E	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	gravidity	42(d)	410 (EC50) (350-540)	mg/kg	Ξ	82	Gale et al. (2006)
		amphipod (Melita plumulosa)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	growth	42(d)	250 (NOEC) 440 (LOEC)	mg/kg	ш	78	Gale et al. (2006)

Metal	Division/ nhvlum	Species	Life Stage	Mode of	Test medium	Temp	Endpoint	Duration	Toxic conc &	Units of taxis cans ^a	Conc.	Quality	Reference
	hu y na			Amenday					toxicity		nd fr	(%)	
Copper	Crustacea	amphipod (Melita plumulosa)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	growth	42(d)	>350 (EC20) 420 (EC20) (350-525) >350 (EC50)	mg/kg	Ξ	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment and filtered seawater	21±1	growth	10(d)	1140 (EC20)	mg/kg	Е	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	survival	42(d)	>350 (EC50) 800 (EC50) >530 (EC50)	mg/kg	B	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment and filtered seawater	21±1	survival	10(d)	770 (EC50) (700-880)	mg/kg	В	82	Gale et al. (2006)
		amphipod (Melita plumulosa)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	1520 (LC50)	mg/kg	В	80	King et al. (2006b)
		amphipod (Melita plumulosa)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	<550 (NOEC) 550 (LOEC)	mg/kg	B	77	King et al. (2006b)
		amphipod (Melita plumulosa)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	1390 (LC51) 1230 (LC48) 1150 (LC68) 1280 (LC53)	mg/kg	В	80	King et al. (2006a)
		amphipod (Melita plumulosa)	adults 8-10mm long, aged 2-3 months	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	1300 (LC48)	mg Cu/kg	и	75	King et al. (2006a)
		amphipod (Melita plumulosa)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered scawater	21±1	survival	10(d)	26 (LC53) 41 (LC51) 27 (LC68) 26 (LC48)	μg/L overlying water	B	80	King et al. (2006a)
Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
--------	---------------------	---	--	---------------------	---	--------------	---------------------	----------	--	-------------------------------------	----------------------------	-------------------------	------------------------
Copper	Crustacea	amphipod (<i>Melita plumulosa</i>)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	23 (LC68) 10 (LC48) 17 (LC51) 12 (LC53)	μg/L pore water	E	80	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	790 (LC50)	mg/kg	Ш	80	King et al. (2006a)
		amphipod (Melita plumulosa)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	460 (NOEC) 820 (LOEC)	mg/kg	Ш	77	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	1150 (LC90)	mg/kg	Е	80	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	1340 (LC82) 1390 (LC89)	mg/kg	Е	77	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	1300 (LC90)	mg Cu/kg	u	75	King et al. (2006a)
		amphipod (Melita plumulosa)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	28 (LC82) 41 (LC89) 27 (LC90)	ug/L overlying water	ш	<i>LL</i>	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	17 (LC89) 7 (LC82) 23 (LC90)	μg/L pore water	E	LL	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	fecundity	12(d)	200 (NOEC) 300 (LOEC)	mg/kg	Е	72	Mann et al. (2009)
		amphipod (<i>Melita plumulosa</i>)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	survival females	12(d)	500 (LC87)	mg/kg	E	72	Mann et al. (2009)
		amphipod (Melita plumulosa)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	survival males	12(d)	500 (LC48)	mg/kg	Ш	72	Mann et al. (2009)

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
Copper	Crustacea	amphipod (<i>Melita plumulosa</i>)	adults 8-10mm long, aged 2-3 months	Static	sediment and filtered scawater	NR	survival	10(d)	1300 (LC50)	μg Cu/g sediment	E	75	Simpson & King (2005)
		amphipod (<i>Melita plumulosa</i>)	adults 8-10mm long, aged 2-3 months	Static	sediment and filtered seawater	NR	survival	10(d)	520 (NOEC)	μg Cu/g sediment	E	69	Simpson & King (2005)
		amphipod (<i>Melita plumulosa</i>)	adults 8-10mm long, aged 2-3 months	Static	sediment and filtered scawater	NR	survival	10(d)	212 (LEC50) 115 (LBC50) 168 (LBC50)	μg Cu/g tissue	E	73	Simpson & King (2005)
		amphipod (<i>Melita plumulosa</i>)	adults	NR	seawater and marine sediment	NR	survival	10(d)	210 (LEC50)	mg/kg tissue	NR	44	Simpson (2005)
	Mollusca	bivalve (Mysella anomala)	4-5mm long	Static	sediment and filtered seawater	NR	survival	10(d)	1300 (<lc10)< td=""><td>µg/L</td><td>E</td><td>11</td><td>King et al. (2004)</td></lc10)<>	µg/L	E	11	King et al. (2004)
		bivalve (Mysella anomala)	adults	NR	marine sediments	NR	survival	10(d)	3700 (LC50)	mg/kg	NR	44	Simpson (2005)
		bivalve (Mysella anomala)	adults	NR	seawater and marine sediment	NR	survival	10(d)	420 (LEC50)	mg/kg tissue	NR	44	Simpson (2005)
		bivalve (Soletellina alba)	15-20mm long	Static	sediment and filtered seawater	NR	survival	10(d)	1300 (LC80)	hg/L	в	11	King et al. (2004)
		bivalve (Soletellina alba)	adults	NR	marine sediments	NR	survival	10(d)	1000 (LC50)	mg/kg	NR	44	Simpson (2005)
		bivalve (Soletellina alba)	adults	NR	seawater and marine sediment	NR	survival	10(d)	43 (LEC50)	mg/kg tissue	NR	44 4	Simpson (2005)
		bivalve (<i>Tellina</i> deltoidalis)	4-5mm long	Static	sediment and filtered seawater	NR	survival	10(d)	1300 (LC100)	µg/L	E	11	King et al. (2004)

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
Copper	Mollusca	bivalve (Tellina deltoidalis)	adults 8-10mm long, aged 2-3 months	Static	sediment and filtered seawater	NR	survival	10(d)	650 (NOEC)	μg Cu/g sediment	Ξ	69	Simpson & King (2005)
		bivalve (Tellina deltoidalis)	adults 8-10mm long, aged 2-3 months	Static	sediment and filtered seawater	NR	survival	10(d)	1020 (LC50)	μg Cu/g sediment	Ε	75	Simpson & King (2005)
		bivalve (Tellina deltoidalis)	adults 8-10mm long, aged 2-3 months	Static	sediment and filtered seawater	NR	survival	10(d)	330 (LBC50) 290 (LBC50) 267 (LEC50) (226-308)	μg Cu/g tissue	E	73	Simpson & King (2005)
		bivalve (Tellina deltoidalis)	adults	NR	seawater and marine sediment	NR	survival	10(d)	260 (LEC50)	mg/kg tissue	NR	44	Simpson (2005)
Lead	Crustacea	amphipod (<i>Melita plumulosa</i>)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	3560 (NOEC) >3560 (LOEC) >3560 (LC50)	mg/kg	Ξ	LL	King et al. (2006b)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	1980 (LC50)	mg/kg	E	80	King et al. (2006b)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	580 (NOEC) 1020 (LOEC)	mg/kg	E	77	King et al. (2006b)
		amphipod (<i>Melita plumulosa</i>)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	fecundity	12(d)	300 (NOEC)	mg/kg	E	72	Mann et al. (2009)
		amphipod (<i>Melita plumulosa</i>)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	fecundity	12(d)	~200 (EC50) ~100 (EC50)	mg/kg	E	69	Mann et al. (2009)
Nickel	Mollusca	bivalve (Mysella anomala)	4-5mm long	Static	sediment and filtered seawater	NR	survival	10(d)	4000 (<lc10)< td=""><td>μg/L</td><td>в</td><td>71</td><td>King et al. (2004)</td></lc10)<>	μg/L	в	71	King et al. (2004)

Simpson & King (2005)

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
Nickel	Crustacea	amphipod (<i>Melita plumulosa</i>)	adults 8-10mm long, aged 2-3 months	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	770 (NOEC) >770 (LOEC) >770 (LC50)	mg/kg	E	LL	King et al. (2006b)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	300 (LC50)	mg/kg	Ε	80	King et al. (2006b)
		amphipod (Melita plumulosa)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	<215 (NOEC) 215 (LOEC)	mg/kg	В	77	King et al. (2006b)
Zinc	Annelida	worm (Australonereis ehlersi)	40mm long	Static	sediment and filtered seawater	NR	survival	10(d)	4000 (<lc10)< td=""><td>µg/L</td><td>Е</td><td>71</td><td>King et al. (2004)</td></lc10)<>	µg/L	Е	71	King et al. (2004)
		worm (Nephtys australiensis)	40mm long	Static	sediment and filtered seawater	NR	survival	10(d)	4000 (<lc10)< td=""><td>μg/L</td><td>Ξ</td><td>71</td><td>King et al. (2004)</td></lc10)<>	μg/L	Ξ	71	King et al. (2004)
Zinc	Crustacea	amphipod (Chaetocorophium cf. lucasi)	adults 8-10mm long, aged 2-3 months	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	4000 (LC37)	mgZn/kg	u	75	King et al. (2006a)
		amphipod (<i>Chaetocorophium</i> cf. <i>lucasi</i>)	juveniles <7 days old	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	4000 (LC78)	mg Zn/kg	и	75	King et al. (2006a)
		amphipod (Corophium colo)	adults 8-10mm long, aged 2-3 months	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	4000 (LC02)	mg Zn/kg	u	75	King et al. (2006a)
		amphipod (<i>Corophium colo</i>)	juveniles <7 days old	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	4000(LC20)	mg Zn/kg	u	75	King et al. (2006a)

Vol. 15, pp. 51-184, 2009

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
Zinc	Crustacea	amphipod (Melita awa)	adults 8-10mm long, aged 2-3 months	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	4000(LC76)	mg Zn/kg	u	75	King et al. (2006a)
		amphipod (<i>Melita awa</i>)	juveniles <7 days old	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	4000(LC97)	mg Zn/kg	с.	75	King et al. (2006a)
		amphipod (Melita matilda)	adults 8-10mm long, aged 2-3 months	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	4000(LC30)	mg Zn/kg	u	75	King et al. (2006a)
		amphipod (<i>Melita matilda</i>)	juveniles <7 days old	Static	uncontaminated sediment from Bonnet Bay Sydney	21±1	survival	10(d)	4000(LC90)	mg Zn/kg	u	75	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	fertility	42(d)	730(NOEC) 980(LOEC)	mg/kg	Ξ	78	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21 ± 1	fertility	42(d)	<630(EC50) 1120(EC50) (1040-1180)	mg/kg	E	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	gravidity	42(d)	>1770(EC50)	mg/kg	Ш	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	growth	42(d)	>1770(EC20)	mg/kg	В	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21 ± 1	growth	42(d)	1280(NOEC) 1540(LOEC)	mg/kg	Е	78	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment and filtered seawater	21±1	growth	10(d)	3650(EC20) (2900-4260)	mg/kg	Ш	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Semi-static	sediment and filtered seawater	21±1	survival	42(d)	>1520(EC50) >1770(EC50)	mg/kg	E	82	Gale et al. (2006)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment and filtered seawater	21±1	survival	10(d)	3420(EC50) (3320-3510)	mg/kg	ε	82	Gale et al. (2006)

Reference		King et al. (2006a)	King et al. (2006a)	King et al. (2006a)		King et al. (2006a)	King et al. (2006a) King et al. (2006a)	King et al. (2006a) King et al. (2006a) (2006a)	King et al. (2006a) King et al. (2006a) (2006a) King et al. (2006a)	King et al. (2006a) King et al. (2006a) King et al. (2006a) King et al. (2006a)
Ouality	score (%)	77	80	75		77	77 77	77 77 77	77 77 77 80	77 77 77 77 77 77 77
Cone.	type ^b	Ξ	E	ц		Е	E E	8 8 8	e e e e	8 8 8 8 8
I Inits of	toxic conc ^a	mg/kg	mg/kg	mg Zn/kg		µg/L overlying water	μg/L overlying water μg/L pore water	μg/L overlying water water water mg/kg	μg/L water water μg/L pore water mg/kg mg/kg	μg/L overlying water water mg/kg mg/kg mg/kg
Tovie cone &	measure of toxicity	3480(LC26) 4530(LC18) 3490(LC11)	>9040(LC50) 2290(NOEC) 4530(LOEC)	4000(LC12)		81(LC26) 66(LC11) 48(LC18)	81(LC26) 66(LC11) 48(LC18) 17(LC18) 31(LC11) 135(LC26)	81(LC26) 66(LC11) 48(LC18) 17(LC18) 31(LC11) 135(LC26) 4670(LC91) 4530(LC81)	81(LC26) 66(LC11) 48(LC18) 17(LC18) 31(LC11) 135(LC26) 4570(LC91) 4530(LC81) 1790(LC81) 2290(NOEC)	81(LC26) 66(LC11) 48(LC18) 17(LC18) 31(LC11) 135(LC26) 4670(LC91) 4530(LC91) 4530(LC91) 3480(LC79) 3480(LC79)
Duration		10(d)	10(d)	10(d)		10(d)	10(d) 10(d)	10(d) 10(d) 10(d)	10(d) 10(d) 10(d) 10(d)	10(d) 10(d) 10(d) 10(d)
Endnoint		survival	survival	survival		survival	survival survival	survival survival survival	survival survival survival survival	survival survival survival survival
Temn	(C)	21±1	21±1	21 ± 1		21±1	21±1 21±1	21±1 21±1 21±1	21±1 21±1 21±1 21±1	21±1 21±1 21±1 21±1 21±1
Test medium		sediment with overlying filtered seawater	sediment with overlying filtered seawater	uncontaminated	sediment from Bonnet Bay Sydney	sediment from Bonnet Bay Sydney sediment with overlying filtered seawater	sediment from Bonnet Bay Sydney sediment with overlying filtered seawater sediment with overlying filtered seawater	sediment from Bonnet Bay Sydney sediment with overlying filtered seawater sediment with overlying filtered seawater sediment with overlying filtered seawater filtered seawater	sediment from Bonnet Bay Sydney sediment with overlying filtered seawater sediment with overlying filtered seawater sediment with overlying filtered seawater sediment with overlying	sediment from Bonnet Bay Sydney sediment with overlying filtered seawater sediment with overlying filtered seawater sediment with overlying filtered seawater sediment with overlying filtered seawater sediment with overlying filtered seawater sediment with overlying filtered seawater sediment with overlying
Mode of	exposure	Static	Static	Static		Static	Static Static	Static Static Static	Static Static Static Static	Static Static Static Static Static
I ife Stage		adults 8-10mm long, aged 2-3 months	adults 8-10mm long, aged 2-3 months	adults	8-10mm long, aged 2-3 months	8-10mm long, aged 2-3 months adults 8-10mm long, aged 2-3 months	8-10mm long, aged 2-3 months adults 8-10mm long, aged 2-3 months 8-10mm long, aged 2-3 months months	8-10mm long, aged 2-3 months adults 8-10mm long, aged 2-3 months 8-10mm long, aged 2-3 months iuveniles <7 days old	8-10mm long, aged 2-3 months adults 8-10mm long, aged 2-3 months 8-10mm long, aged 2-3 months iuveniles <7 days old juveniles	8-10mm long, aged 2-3 months 8-10mm long, aged 2-3 months 8-10mm long, aged 2-3 aged 2-3 months juveniles <7 days old juveniles <7 days old
Sneries		amphipod (<i>Melita plumulosa</i>)	amphipod (Melita plumulosa)	amphipod	(Melita plumulosa)	(Melita plumulosa) amphipod (Melita plumulosa)	(Melita plumulosa) amphipod (Melita plumulosa) amphipod (Melita plumulosa)	(<i>Melita plumulosa</i>) amphipod (<i>Melita plumulosa</i>) amphipod (<i>Melita plumulosa</i>) amphipod (<i>Melita plumulosa</i>)	(Melita plumulosa) amphipod (Melita plumulosa) amphipod (Melita plumulosa) amphipod (Melita plumulosa) amphipod (Melita plumulosa)	(Melita plumulosa) amphipod (Melita plumulosa) amphipod (Melita plumulosa) amphipod (Melita plumulosa) amphipod (Melita plumulosa) amphipod
Division/	phylum	Crustacea								
Metal		Zinc								

Metal	Division/ phylum	Species	Life Stage	Mode of exposure	Test medium	Temp (°C)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc. type ^b	Quality score (%)	Reference
Zinc	Crustacea	amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	48(LC81) 270(LC91) 81(LC79)	μg/L overlying water	E	77	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	juveniles <7 days old	Static	sediment with overlying filtered seawater	21±1	survival	10(d)	135(LC79) 17(LC81) 330(LC91)	μg/L pore water	E	77	King et al. (2006a)
		amphipod (<i>Melita plumulosa</i>)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	fecundity	12(d)	~450(EC50) ~280(EC50)	mg/kg	Ε	69	Mann et al. (2009)
		amphipod (<i>Melita plumulosa</i>)	sexually mature males & females	Semi-static	sediment and filtered seawater	24	fecundity	12(d)	500(NOEC)	mg/kg	В	72	Mann et al. (2009)
Zinc	Mollusca	bivalve (Soletellina alba)	15-20mm long	Static	sediment and filtered seawater	NR	survival	10(d)	4000(<lc10)< td=""><td>µg/L</td><td>Ш</td><td>71</td><td>King et al. (2004)</td></lc10)<>	µg/L	Ш	71	King et al. (2004)
		bivalve (Tellina deltoidalis)	15-20mm long	Static	sediment and filtered seawater	NR	survival	10(d)	4000(LC10)	µg/L	E	71	King et al. (2004)

^a the concentration is always expressed as a mass of the metal per unit mass of the sediment unless otherwise stated. The concentration is alternately expressed as mass of metal per unit volume of either the pore water or overlying water or as the mass of metal per mass of organism tissue.^b m = measured concentration, n = nominal (not measured) concentration, NR = not recorded.

Australasian metal toxicity data – IV

Langdon et al

APPENDIX D

SUMMARY OF THE METAL TOXICITY DATA FOR AUSTRALASIAN TERRESTRIAL BIOTA.

T	
Reference	Scott et al. (2008)
Quality score	62
Conc type ^b	E
Units of toxic conc ^a	لیس الم
Toxic conc & measure of toxicity	28.8 (EC10) 15.3 (EC10) (0.88-265) 19.4 (EC10) (4.1x10 ⁻¹⁰ - 9.2x10 ¹¹) 28.4 (EC10) (1.8x10 ⁴² - 4.4x10 ⁴⁴) 16.7 (EC10) (2.5-109) (2.5-109) (2.5-109) (2.5-109) (3.4279) (0.34-279) (0.34-279) (0.34-279) (0.34-279) (0.34-279) (0.34-279) (1.1x10 ⁻⁹ - 6.5x10 ¹¹) 9.8 (EC10) (0.34-279) (0.34-279) (1.1x10 ⁻⁹ - 6.5x10 ¹¹) 9.5 (EC10) (0.34-279) (1.1x10 ⁻⁵ - 1.8x10 ⁶) (1.1x10 ⁻⁵ - 1.8x10 ⁶) (1.4x10 ⁻⁴⁵ - 3x10 ⁴³) (1.1x10 ⁷ - 2.4x10 ⁸) (1.1x10 ⁷ - 2.4x10 ⁸) (0.07-2300)
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hd	4 C.
Temp (°C)	21±1
Test medium	solution
Mode of Exposure	pulse & static
Life Stage	seed
Species	burr medic (Medicago polymorpha) Different cultivars were tested.
Division/ phylum	Magnolio- phyta
Metal	Aluminium

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Reference	Scott et al. (2008)
Quality score	62
Conc type ^b	п
Units of toxic conc ^a	ДЛопт
Toxic conc & measure of toxicity	1.5 (EC10) (1.1x10 ⁷ - 2.1x10 ⁷) 2.1x10 ⁷) 4 (EC10) (0.73-22.1) 5.5 (EC10) (3.5-8.6) 7.7 (EC10) (3.5-8.1) (3.5-9.7) (3.5-9.7) (3.5-9.7) (3.5-9.7) (3.5-9.7) (3.5-9.7) (3.5-9.7) (3.5-9.7) (3.5-9.7) (3.5-9.7) (3.5-9.7) (0.02-1256) (3.5-9.7) (0.02-1256) (3.5-9.7) (0.02-1256) (3.5-9.7) (0.02-1256) (1.2-8.6)
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hd	4.3
Temp (°C)	21±1
Test medium	solution
Mode of Exposure	pulse & static
Life Stage	seed
Species	burr medic (<i>Medicago</i> <i>polymorpha</i>) Different cultivars were tested.
Division/ phylum	phyta
Metal	Aluminium

Langdon et al

Vol. 15, pp. 51-184, 2009

1	
Reference	Scott et al. (2008)
Quality score	62
Conc type ^b	E
Units of toxic conc ^a	µmol/L
Toxic conc & measure of toxicity	$\begin{array}{c} 1.98\ (\text{EC10})\\ (6.2 \times 10^{6}-\\ 6.3 \times 10^{5})\\ (6.2 \times 10^{5}-\\ 6.3 \times 10^{5})\\ 4.4\ (\text{EC10})\\ (7.4 \times 10^{-12}-\\ 2.6 \times 10^{-12}-\\ 1.6 \times 10^{-5}-\\ 0.9\ (\text{EC10})\\ (0.78-1.1)\\ (0.78-1.1)\\ (0.78-10)\\ (0.5-30.2)\\ 0.05\ (\text{EC10})\\ (0.80-509)\\ 3.4\ (\text{EC10})\\ (0.05-216)\\ (0.05-216)\\ (0.05-216)\\ (0.05-216)\\ (0.52-10.6)\\ (5.2-10.6)\\ $
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hq	4.3
Temp (°C)	21±1
Test medium	nutrient solution
Mode of Exposure	pulse & static
Life Stage	peed
Species	burr medic (<i>Medicago</i> <i>polymorpha</i>) Different cultivars were tested.
Division/ phylum	Magnolio- phyta
Metal	Aluminium

Vol. 15, pp. 51-184, 2009

1	
Reference	Scott et al. (2008)
Quality score	62
Conc type ^b	а
Units of toxic conc ^a	J.lomu
Toxic conc & measure of toxicity	2.9 (EC10) (0.01-713) (0.01-713) (0.2-125) 5.3 (EC10) (1.7x10 6 - 1.7x10 9) (1.7x10 9) (1.2-125) (1.7x10 9) (1.2-18) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (1.9-7.8) (2.2-9.9) (1.9-10) (2.2-9.9) (2.2
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hq	4.3
Temp (°C)	21±1
Test medium	solution
Mode of Exposure	pulse & static
Life Stage	seed
Species	burr medic (<i>Medicago</i> <i>polymorpha</i>) Different cultivars were tested.
Division/ phylum	phyta
Metal	Aluminium

I	
Reference	Scott et al. (2008)
Quality score	62
Conc type ^b	с с
Units of toxic conc ^a	لی اسمار ل
Toxic conc & measure of toxicity	$\begin{array}{c} 14.6\ (\mathrm{EC20})\\ (1.64-130)\\ 5.2\ (\mathrm{EC20})\\ (0.25-107)\\ 5.2\ (\mathrm{EC20})\\ (1.45-18.4)\\ 4.7\ (\mathrm{EC20})\\ (1.3-16.9)\\ 6.3\ (\mathrm{EC20})\\ (1.3-16.9)\\ (0.9-441)\\ 5\ (\mathrm{EC20})\\ (0.9-441)\\ 5\ (\mathrm{EC20})\\ (1.3-10^{-13})\\ (1.3-10^{-13})\\ (1.3-10^{-13})\\ (1.3-10^{-13})\\ (1.3-10^{-13})\\ (1.0-10^{-5}$
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hd	¢.
Temp (°C)	21±1
Test medium	solution
Mode of Exposure	pulse & static
Life Stage	seed
Species	burr medic (<i>Medicago</i> <i>polymorpha</i>) Different cultivars were tested.
Division/ phylum	n Magnolio- phyta
Metal	Aluminiun

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Vol. 15, pp. 51-184, 2009

Reference	Scott et al. (2008)
Quality score	62
Conc type ^b	а
Units of toxic conc ^a	J.lomu
Toxic conc & measure of toxicity	8 (EC20) (6.1-10.4) 5 (EC20) (2.4-10.4) 7.6 (EC20) (2.1-27.9) 29.1 (EC20) (5.8x10 ²³ - 1.5x10 ²⁵) (1.5x10 ²⁵) (4.9-10) 6.6 (EC20) (0.6-75.4) 16.2 (EC20) (0.6-75.4) (0.6-72.4) 29.6 (EC20) (0.037-7132) 29.6 (EC20) (0.037-7132) 29.6 (EC20) (0.05-217) 2.6 (EC20) (0.05-217) 2.6 (EC20) (0.05-217) 2.6 (EC20) (1.6-11.9) (6.6-10.6) (1.6-11.9) (6.6-10.6) (1.6-11.9) (0.23-158)
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hq	4.3
Temp (°C)	21±1
Test medium	solution
Mode of Exposure	pulse & static
Life Stage	seed
Species	burr medic (<i>Medicago</i> <i>polymorpha</i>) Different cultivars were tested.
Division/ phylum	phyta phyta
Metal	Aluminium

Reference	Scott et al (2008)
Quality score	62
Conc type ^b	е
Units of toxic conc ^a	۲/lomμ
Toxic conc & measure of toxicity	3.8 (EC20) (1.2×10^{-4}) $1.2 \times 10^{5})$ 4.2 (EC20) (3.2.5.3) 4.1 (EC20) (0.07-257) 0.18 (EC20) (5.0×10^{-18}) $6.2 \times 10^{15})$ 19.9 (EC20) (0.04-9240) (0.04-9240) (0.3-56.7) (0.04-9240) (0.3-56.7) (0.04-9240) (1.9×10^{-8}) (1.9×10^{-8}) (1.9×10^{-8}) (1.9×10^{-8}) (1.9×10^{-8}) (1.9×10^{-8}) (1.9×10^{-8}) (1.5 (EC20)) (0.2-91.9) (1.6×10^{-6}) (0.2-91.9) (0.2-91
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hd	4 6
Temp (°C)	21±1
Test medium	solution
Mode of Exposure	pulse & static
Life Stage	seed
Species	burr medic (Medicago polymorpha) Different cultivars were tested.
Division/ phylum	n Magnolio- phyta
Metal	Aluminiur

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Vol. 15, pp. 51-184, 2009

1	
ance	t al.
efere	2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 2008) 200
ity R e	
Qual	62
Conc type ^b	E
Units of toxic conc ^a	µmol/L
onc & e of	$\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i$
Toxic co measur toxicity	 28.6 (EG 28.5 (EG 734000 734000 73400 73400 73400 732.4 (EG 2.3.22 2.3.23 2.3.23 5.7x10 5.7x10 5.7x10 19.7 (EG (2.8-2) (7.7-1) (10.8-7) (10.8-7)
ation	()
Dur	3
ooint	owth
Endp	oot gr
ganic urbon (%)	
C3 D	
EC (µS/c1	
Hd	4.3
Temp (°C)	21±1
Test edium	Jution
of Ire m	
Mode	pulse d static
tage	
Life S	seed
	o vere
ecies	r medi <i>prinorp</i> fferent tivars v ed.
Sp.	Poly Did test
/ision/ iylum	gnolic
Div bf	n Ma pt
tal	
Me	Alu

Vol. 15, pp. 51-184, 2009

Reference	Scott et al. (2008)
Quality score	63
Conc type ^b	
Units of toxic conc ^a	T/lomu
Toxic conc & measure of toxicity	$\begin{array}{c} 11.2 \ (EC50) \\ (8.2-15.5) \\ (8.2-15.5) \\ (8.2-15.5) \\ (1.0 \times 10^{-6} - 2.4 \times 10^7) \\ (1.0 \times 10^{-6} - 2.4 \times 10^7) \\ (1.0 \times 1-2.900) \\ (1.0.2-2900) \\ (1.0.2-1325) \\ (1.0.3-15.4) \\ (1.0.3-15.4) \\ (1.0.3-15.4) \\ (1.0.3-15.4) \\ (1.0.2-1325) \\ (1.0.7-1325) \\ (1.0.7-1325) \\ (1.0.7-1325) \\ (1.0.7-1325) \\ (1.0.7-1325) \\ (1.0.7-1325) \\ (1.0.7-1325) \\ (1.0005 - 0$
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hq	4.3
Temp (°C)	21±1
Test medium	solution
Mode of Exposure	pulse & static
Life Stage	peed
Species	burr medic (Medicago Different cultivars were tested.
Division/ phylum	phyta
Metal	Aluminium

1	
Reference	Scott et al. (2008)
Quality score	62
Conc type ^b	=
Units of toxic conc ^a	Д/юшц
Toxic conc & measure of toxicity	8.2 (EC50) (1.9-36.5) (1.9-36.5) (2.2-73.2) 7.7 (EC50) (6.5-9) 7.7 (EC50) (6.5-9) 7.1 (EC50) (6.3-8) 3.3 (EC50) (0.5-632) (0.04-15600) 8.9 (EC50) (0.004-15600) 8.9 (EC50) (0.004-15600) 8
Duration	3(d)
Endpoint	root growth
Organic Carbon (%)	
EC (µS/cm)	
Hd	τ. ε
Temp (°C)	21±1
Test medium	solution
Mode of Exposure	pulse & static
Life Stage	seed
Species	burr medic (Medicago polymorpha) Different cultivars were tested.
Division/ phylum	n Magnolio- phyta
Metal	Aluminiun

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hq	EC Or (µS/cm) Ca (ganic Irbon %)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Aluminium	Magnolio- phyta	burr medic (<i>Medicago</i> <i>polymorpha</i>) Different cultivars were tested.	pees	pulse & static	nutrient solution	21±1	4.3		0	ot growth	3(d)	10.3 (EC50) (3.2-33.4) 6 (EC50) (0.7-52.7) 7.8 (EC50) (1.15-52.6) 9.1 (EC50) (8.2-10.2)	hmol/L	с –	62	(2008) (2008)
		wheat (Triticum aestivum)	3 day old seedlings; roots 20 mm	static	0.2 mM solution CaCl ₂	25	4.3		ro	ot length	48(h)	0.96 (EA25) (0.83-1.21) 1.67 (EA50) (1.5-2.1)	μM	В	81	Fortunati et al. (2005)
Cadmium	Pterido- phyta	fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ing mix perlite			ffr	ond dry wt	20(w)	50-100 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ing mix perlite			IO	ot dry wt	20(w)	<50 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Blechnum cartilagineum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ing mix perlite			ffr	ond dry wt	20(w)	~50 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Blechnum cartilagineum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ing mix perlite			ro	ot dry wt	20(w)	<50 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Blechnum nudum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			fir	ond dry wt	20(w)	<500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Blechnum nudum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ing mix perlite			ro	ot dry wt	20(w)	50-100 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test] medium	l'emp p (°C)	t) He	EC (LS/cm) (Drganic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Cadmium	Pterido- phyta	fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco potti with 10% p	ng mix perlite			Į	rond dry wt	20(w)	<50 (EC50)	mg/kg	и	48	Kachenko al. (2007)
		fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco potti with 10% _I	ng mix ɔerlite			I	oot dry wt	20(w)	100-500 (EC50)	mg/kg	u	48	Kachenko e al. (2007)
		fern (Dennstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco potti with 10% p	ng mix perlite			Ţ	rond dry wt	20(w)	>500 (EC50)	mg/kg	п	48	Kachenko al. (2007)
		fern (Dennstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco potti with 10% p	ng mix perlite			I	oot dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko (al. (2007)
		fern (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco potti with 10% _f	ng mix ɔerlite			Į	rond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko (al. (2007)
		fern (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco potti with 10% p	ng mix əerlite			Г	oot dry wt	20(w)	100-500 (EC50)	mg/kg	ц	48	Kachenko (al. (2007)
		fern (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco potti with 10% p	ng mix oerlite			f	rond dry wt	20(w)	50-100 (EC50)	mg/kg	ц	48	Kachenko (al. (2007)
		fern (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco potti with 10% p	ng mix oerlite			г	oot dry wt	20(w)	50-100 (EC50)	mg/kg	ц	48	Kachenko (al. (2007)
		fern (Nephrolepis cordifolia)	3-4 months with 3-4 fronds	static	Debco potti with 10% p	ng mix oerlite			Ţ	rond dry wt	20(w)	<50 (EC50)	mg/kg	п	48	Kachenko e al. (2007)
		fern (Nephrolepis cordifolia)	3-4 months with 3-4 fronds	static	Debco potti with 10% p	ng mix perlite			L	oot dry wt	20(w)	~50 (EC50)	mg/kg	ц	48	Kachenko al. (2007)
		fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco potti with 10% I	ng mix perlite			ţ	rond dry wt	20(w)	50-100 (EC50)	mg/kg	и	48	Kachenko (al. (2007)

Kachenko et al. (2007)

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hq	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of 1 of 1 toxic conc ^a	Conc type ^b	Quality score	Reference
Cadmium	Pterido- phyta	fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	50-100 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Pteris vittata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				frond dry wt	20(w)	>500 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
Cadmium	Arthro- poda	collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	growth	42(d)	50 (NOEC) 200 (LOEC)	mg/kg	۳	76	Nursita et al. (2005)
		collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	reproduc- tion	42(d)	65 (EC10) 125 (EC50)	mg/kg	и	76	Nursita et al. (2005)
		collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	Survival	42(d)	50 (NOEC) 200 (LOEC)	mg/kg	ц	76	Nursita et al. (2005)
		collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	time to 1st young	42(d)	50 (NOEC) 200 (LOEC)	mg/kg	ц	76	Nursita et al. (2005)
Chromium	Pterido- phyta	fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				frond dry wt	20(w)	~100 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	50-100 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		fern (Blechnum cartilagineum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				frond dry wt	20(w)	~100 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Blechnum cartilagineum)	3-4 months with 3-4 frond	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	100-500 (EC50)	mg/kg	u	48	Kachenko et al. (2007)

asian metal	toxicity da	ta – IV									Lang
Reference	Kachenko et al. (2007)	Kachenko et al. (2007)	Kachenko et al. (2007)	Kachenko et al. (2007)	Kachenko et al. (2007)	Kachenko et al. (2007)	Kachenko et al. (2007)				
Quality score	48	48	48	48	48	48	48	48	48	48	48
Conc type ^b	u	ц	ц	Ē	ц	u	ц	и	u	ц	ц
Units of toxic conc ^a	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toxic conc & measure of toxicity	<50 (EC50)	>500 (EC50)	~50 (EC50)	>500 (EC50)	<50 (EC50)	>500 (EC50)	>500 (EC50)	>500 (EC50)	>500 (EC50)	>500 (EC50)	50 (EC50)
Duration	20(w)	20(w)	20(w)	20(w)	20(w)	20(w)	20(w)	20(w)	20(w)	20(w)	20(w)
Endpoint	rond dry wt	oot dry wt	rond dry wt	oot dry wt	rond dry wt	oot dry wt	rond dry wt	oot dry wt	rond dry wt	oot dry wt	rond dry wt
EC Organic (μS/cm) Carbon (%)	-	-	-		-	_	-	_		_	-
Hq											
Temp (°C)	otting mix % perlite	otting mix % perlite	otting mix % perlite	otting mix % perlite	otting mix % perlite	otting mix % perlite	otting mix % perlite				
Test medium	Debco pc with 10%	Debco pc with 10%	Debco pc with 10%	Debco pc with 109	Debco pc with 10%	Debco pc with 10%	Debco pc with 109				
Mode of Exposure	static	static	static	static	static	static	static	static	static	static	static
Life Stage	3-4 months with 3-4 fronds	3-4 months with 3-4 fronds	3-4 months with 3-4 fronds	3-4 months with 3-4 fronds	3-4 months with 3-4 fronds	3-4 months with 3-4 fronds	3-4 months with 3-4 fronds				
Species	fern (Blechnum nudum)	fern (Blechnum nudum)	fern (Calochlaena dubia)	fern (Calochlaena dubia)	fern (Dennstaedtia davakkioides)	fern (Dennstaedtia davakkioides)	fern (Doodia aspera)	fern (Doodia aspera)	fern (Hypolepis muelleri)	fern (Hypolepis muelleri)	fern (Nephrolepis cordifolia)
Division/ phylum	Pterido- phyta										
Metal	Chromium										

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)) Hq	EC O (µS/cm) C	rganic 'arbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Chromium	Pterido- phyta	fern (Nephrolepis cordifolia)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	<50 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				frond dry wt	20(w)	>500 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Pteris vittata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Pteris vittata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	>500 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
Copper	Bacteria	nitrifying microbes	indigenous	static	soil	20	4		5.6	nitrification	28(d)	1 (EC10) 5 (EC30) 59 (EC50)	mg/kg	Ξ	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	4. 4.		1.2	nitrification	28(d)	47 (EC10) 70 (EC30) 140 (EC50)	mg/kg	E	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	4.5		1.4	nitrification	28(d)	206 (EC10) 208 (EC30) 211 (EC50)	mg/kg	ε	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	4.8		2.6	nitrification	28(d)	141 (EC10) 225 (EC30) 497 (EC50)	mg/kg	E	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	4.9		2	nitrification	28(d)	175 (EC10) 228 (EC30) 355 (EC50)	mg/kg	B	81	Broos et al. (2007)

Matal	Division/	Snaviae	l ifa Stana	Mode of	Taet	Tamn	Hu	LC Oro	anio F	ndnoint	Juration	Tavio cono &	lnite	Conc	Ouality	Dafaranca
	phylum			Exposure	medium	(°C)		(µS/cm) Car (⁹	(%)			toxicity	of toxic conc ^a	type ^b	score	
Copper	Bacteria	nitrifying microbes	indigenous	static	soil	20	S	-	.8 nit	rification	28(d)	383 (EC10) 502 (EC30) 797 (EC50)	mg/kg	Ξ	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	5.1	ςΩ	.4 nit	rification	28(d)	887 (EC10) 914 (EC30) 964 (EC50)	mg/kg	E	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	5.4	0	.9 nit	rification	28(d)	34 (EC10) 254 (EC30) 1078 (EC50)	mg/kg	Ξ	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	6.3	-	.8 nit	rification	28(d)	502 (EC10) 571 (EC30) 712 (EC50)	mg/kg	E	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	6.3	-	.9 nit	rification	28(d)	919 (EC10) 932 (EC30) 953 (EC50)	mg/kg	Ξ	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	7.3	-	.3 nit	rification	28(d)	1271 (EC10) 1451 (EC30) 1821 (EC50)	mg/kg	E	81	Broos et al. (2007)
		nitrifying microbes	indigenous	static	soil	20	7.6	-	.2 nit	rification	28(d)	>2594 (EC10)	mg/kg	В	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	4	Ś	.6 res rat	ipiration e	6(h)	48 (EC10) 134 (EC30) 784 (EC50)	mg/kg	Ξ	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	4.4	_	.2 res rat	piration e	6(h)	39 (EC10) 111 (EC30) 662 (EC50)	mg/kg	Ξ	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	4.5	-	.4 res rat	ipiration e	6(h)	326 (EC10) 450 (EC30) 555 (EC50)	mg/kg	В	81	Broos et al. (2007)

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Reference	Broos et al. (2007)	Broos et al. (2007)	Broos et al. (2007)	Broos et al. (2007)	Broos et al. (2007)	Broos et al. (2007)	Broos et al. (2007)	Broos et al. (2007)	Broos et al. (2007)
Quality score	81 1	81 1	81 1	81 1	81 1	81 1	81 1	81 1	81 1
Conc type ^b	Ξ	Ξ	Ш	Ξ	Е	Ш	В	Ξ	E
Units of toxic conc ^a	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toxic conc & measure of toxicity	25 (EC10) 97 (EC30) 940 (EC50)	255 (EC10) 503 (EC30) 1606 (EC50)	222 (EC10) 559 (EC30) 2321 (EC50)	202 (EC10) 421 (EC30) 1487 (EC50)	3 (EC10) 31 (EC30) 1078 (EC50)	134 (EC10) 259 (EC30) 795 (EC50)	26 (EC10) 73 (EC30) 431 (EC50)	230 (EC10) 496 (EC30) 1842 (EC50)	185 (EC10) 345 (EC30) 1000 (EC50)
Duration	6(h)	6(h)	6(h)	6(h)	6(h)	6(h)	6(h)	6(h)	6(h)
Endpoint	respiration rate	respiration rate	respiration rate	respiration rate	respiration rate	respiration rate	respiration rate	respiration rate	respiration rate
EC Organic tS/cm) Carbon (%)	2.6	0	1.8	3.4	6.0	1.8	1.9	1.3	1.2
i) Hq	4.8	4.9	S	5.1	5.4	6.3	6.3	7.3	7.6
Temp (°C)	20	20	20	20	20	20	20	20	20
Test medium	soil	soil	soil	soil	soil	soil	soil	soil	soil
Mode of Exposure	static	static	static	static	static	static	static	static	static
Life Stage	indigenous	indigenous	indigenous	indigenous	indigenous	indigenous	indigenous	indigenous	indigenous
Species	soil microbes	soil microbes	soil microbes	soil microbes	soil microbes	soil microbes	soil microbes	soil microbes	soil microbes
Division/ phylum	Bacteria								

Langdon et al

Metal

Copper

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Нd	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Copper	Magnolio- phyta	barley (Hordeum vulgare)	seed	static	soil		4	14	5.7	grain yield	9(m)	28 (EC10) 227 (EC50)	mg/kg	æ	74	Vic NBRP Unpublishe
		barley (Hordeum vulgare)	seed	static	soil		2	٢	7	grain yield	9(m)	49 (EC10) 515 (EC50)	mg/kg	Ш	74	Vic NBRP Unpublishe
		barley (Hordeum vulgare)	seed	static	soil		6.3	Γ	1.9	grain yield	9(m)	77 (EC10) 720 (EC50)	mg/kg	Ξ	74	SA NBRP Unpublishe
		barley (<i>Hordeum</i> vulgare)	seed	static	soil		6.7	20	1.8	grain yield	9(m)	222 (EC10) 645 (EC50)	mg/kg	В	74	SA NBRP Unpublishe
		barley (<i>Hordeum</i> vulgare)	seed	static	soil		7.6	11	1.1	grain yield	9(m)	313 (EC10) 1300 (EC50)	mg/kg	E	74	SA NBRP Unpublishe
		candelabra wattle (Acacia holosericea)	42 day old seedlings	semi-static	nutrient solution					shoot dry weight	70(d)	0.7 (EC10) 2.2 (EC50)	μM	E	77	Reichman e al. (2006)
		candelabra wattle (Acacia holosericea)	42 day old seedlings	semi-static	nutrient solution					root dry wt	70(d)	0.7 (EC10) 2.1 (EC50)	Μų	E	77	Reichman e al. (2006)
		colza (Brassica napus)	peed	static	soil		4.6	9	2.6	grain yield	9(m)	926 (EC10) 1136 (EC30) 1566 (EC50)	mg/kg	Ξ	74	WA NBRP Unpublishe
		colza (Brassica napus)	seed	static	soil		5	٢	7	grain yield	9(m)	315 (EC10) 452 (EC50)	mg/kg	Е	74	Vic NBRP Unpublishe

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Vic NBRP Unpublished

Vic NBRP Unpublished

SA NBRP Unpublished

SA NBRP Unpublished

SA NBRP Unpublished

Reichman et al. (2006)

Reichman et al. (2006)

WA NBRP Unpublished

Vic NBRP Unpublished

Langdon et al

	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Ηq	EC (μS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
~ ~	colza Brassica 1apus)	seed	static	soil		6.7	20	1.8	grain yield	9(m)	1310 (EC10) 1370 (EC50)	mg/kg	Е	74	SA NBRP Unpublished
	cotton Gossypium ip.)	seed	static	soil		6.7	10	1.4	grain yield	9(m)	1451 (EC10) 1757 (EC50)	mg/kg	Е	74	QLD NBRP Unpublished
-) 2	oowpea Vigna inguiculata)	seedlings with radicle length 10mm	static	nutrient solution	25-30				biomass	14(d)	1.7 (EC10)	Мμ	Ξ	70	Kopittke & Menzies (2006)
	narrow-leaved ronbark Eucalyptus rebra)	42 day old seedlings	semi-static	nutrient solution					root dry wt	70(d)	0.7 (EC10) 1.2 (EC50)	Мц	Ε	77	Reichman et al. (2006)
	narrow-leaved ronbark Eucalyptus rebra)	42 day old seedlings	semi-static	nutrient solution					shoot dry weight	70(d)	0.7 (EC10) 1 (EC50)	Мц	Ξ	77	Reichman et al. (2006)
-	oeanut Arachis typogaea)	seed	static	soil		4.5	9	1.4	grain yield	9(m)	197 (EC10) 516 (EC50)	mg/kg	Е	74	QLD NBRP Unpublished
	seanut Arachis typogaea)	seed	static	soil		5.4	9	1.8	grain yield	9(m)	398 (EC10) 467 (EC50)	mg/kg	Е	74	QLD NBRP Unpublished
$- \sim \sim$	oroso millet Panicum niliaceum)	seed	static	soil		5.4	9	1.8	grain yield	9(m)	206 (EC10) 389 (EC50)	mg/kg	E	74	QLD NBRP Unpublished
$- \bigcirc \bigcirc$	iver redgum Eucalyptus camaldulensis)	42 day old seedlings	semi-static	nutrient solution					shoot dry weight	70(d)	0.6 (EC10) 1 (EC50)	щМ	E	77	Reichman et al. (2006)
	river redgum Eucalyptus camaldulensis)	42 day old seedlings	semi-static	nutrient solution					root dry wt	70(d)	0.6 (EC10) 1 (EC50)	Μц	E	LL	Reichman et al. (2006)

Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hq	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Magnolio- phyta	 sorghum (Sorghum sp.) 	seed	static	soil		5.4	9	1.8	grain yield	9(m)	206 (EC10) 318 (EC50)	mg/kg	Ξ	74	QLD NBRP Unpublished
	sorghum (Sorghum sp.)	seed	static	soil		7.9	10	1.4	grain yield	9(m)	598 (EC10) 1433 (EC50)	mg/kg	E	74	QLD NBRP Unpublished
	sugarcane (Saccharum sp.)	seed	static	soil		4.5	9	1.4	grain yield	9(m)	203 (EC10) 342 (EC50)	mg/kg	Ε	74	QLD NBRP Unpublished
	triticale (<i>Tritosecale</i> sp.)	seed	static	soil		4	14	5.7	grain yield	9(m)	481 (EC10) 1020 (EC30) 2040 (EC50)	mg/kg	В	74	Vic NBRP Unpublished
	triticale (<i>Tritosecale</i> sp.)	seed	static	soil		5.4	9	1.8	grain yield	9(m)	274 (EC10) 363 (EC50)	mg/kg	Ξ	74	QLD NBRP Unpublished
	weeping teatree (Melaleuca leucadendra)	e 42 day old seedlings	semi-static	nutrient solution					shoot dry weight	70(d)	0.5 (EC10) 0.8 (EC50)	Μų	Ξ	77	Reichman et al. (2006)
	weeping teatre (Melaleuca leucadendra)	e 42 day old seedlings	semi-static	nutrient solution					root dry wt	70(d)	0.5 (EC10) 1 (EC50)	μM	Ε	77	Reichman et al. (2006)
	wheat (Triticum aestivum)	3 day old seedlings; roots 20 mm	static	0.2 mM solution CaCl ₂	25	4 v.			root length	48(h)	0.39 (EA50) (0.35-0.45) 0.17 (EA25) 0.17 (EA25) (0.15-0.21) 0.36 (EA50) (0.35-0.4) 0.15 (EA25) (0.13-0.17) 0.34 (EA50) (0.29-0.38) 0.16 (EA25) (0.13-0.2)	Mi	Ξ	81	Fortunati et al. (2005)

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

1			
Reference	Fortunati et al. (2005)	Warne et al. (2008a)	Warne et al. (2008b)
Quality score	8	74	74
Conc type ^b	ε	E	Ξ
Units of toxic conc ^a	With	mg/kg	mg/kg
1 Toxic conc & measure of toxicity	0.36 (EA50) (0.34-0.41) 0.33 (EA50) (0.29-0.39) 0.78 (EA50) (0.7-0.88) 0.61 (EA50) (0.54-0.76) 0.29 (EA25) (0.29-0.32) 0.29 (EA25) (0.29-0.32) 0.29 (EA25) (0.13-0.16) 0.28-0.4) 0.15 (EA25) (0.13-0.16) 0.58 (EA25) (0.13-0.16) 0.58 (EA25) (0.13-0.16) 0.58 (EA25) (0.13-0.16) 0.58 (EA25) (0.14-0.17) 0.15 (EA25) (0.14-0.17) (0.14-0.17) (0.14-0.17) (0.14-0.17) (0.14-0.17) (0.12 (EA25) (0.11-0.15) (0.11-0.15)	284 (EC10) (100-800) 649 (EC50) (390-1080)	115 (EC10) (72-180) 190 (EC20) (135-265) 450 (EC50) (380-540)
Duration	48(h)	9(m)	21(d)
Endpoint	root length	grain yield	plant biomass
Organic Carbon (%)		5.6	1.3
EC (µS/cm)			
Hq	4.	4	4.4
Temp (°C)	25		20 day; 15 night
Test medium	0.2 mM solution CaCl ₂	soil	soil
Mode of Exposure	static	static	static
Life Stage	3 day old seedlings; roots 20 mm	seed	seed
Species	wheat (<i>Triticum</i>) <i>aestivum</i>)	wheat (<i>Triticum</i> aestivum)	wheat (<i>Triticum</i> aestivum)
Division/ phylum	Magnolio- phyta		
Metal	Copper		

	-i		-le	-i-	-i	-i
Reference	Warne et a (2008a)	Warne et a (2008a)	Warne et a (2008b)	Warne et a (2008b)	Warne et a (2008a)	Warne et a (2008a)
Quality score	74	74	74	74	74	74
Conc type ^b	Ξ	Ξ	E	Ξ	E	ш
Units of toxic conc ^a	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toxic conc & measure of toxicity	117 (EC10) (37-370) 315 (EC50) (140-715)	130 (EC10) (58-294) 212 (EC50) (133-340)	260 (EC10) (230-295) 263 (EC20) (245-285) 270 (EC50) (265-275)	465 (EC10) (0.15- 1555000) 490 (EC20) (2-118000) 530 (EC50) (195-1450)	52 (EC10) (14-90) 330 (EC50) (170-650)	473 (EC10) (132-1700) 1760 (EC50) (795-3900)
Duration	8(w)	9(m)	21(d)	21(d)	8(w)	9(m)
Endpoint	plant biomass	grain yield	plant biomass	plant biomass	plant biomass	grain yield
Organic Carbon (%)	1.2	1:2	1.4	2.6	2.6	2.6
EC (μS/cm)						
Hq	4.4	4.4	4.5	4.6	4.8	4.8
Temp (°C)			20 day; 15 night	20 day; 15 night		
Test medium	soil	soil	soil	soil	soil	soil
Mode of Exposure	static	static	static	static	static	static
Life Stage	seed	seed	seed	seed	seed	seed
Species	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)
Division/ phylum	Magnolio- phyta					
Metal	Copper					

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hd	EC Orga (µS/cm) Cart (%	nic Endpoin on)	it Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Copper	Magnolio- phyta	wheat (<i>Triticum</i> aestivum)	seed	static	soil	20 day; 15 night	4.9	с Т	biomass	21(d)	110 (EC10) (65-195) 225 (EC20) (150-340) 740 (EC50) (595-920)	mg/kg	E	74	Warne et al. (2008b)
		wheat (Triticum aestivum)	seed	static	soil		4.9	2.0) grain yield	1 9(m)	148 (EC10) (64-350) 476 (EC50) (270-840)	mg/kg	Е	74	Warne et al. (2008a)
		wheat (Triticum aestivum)	seed	static	soil		Ś	1.8	biomass	8(w)	193 (EC10) (137-272) 272 (EC50) (227-328)	mg/kg	Е	74	Warne et al. (2008a)
		wheat (Triticum aestivum)	seed	static	soil		S	1.1	grain yield	1 9(m)	209 (EC10) (112-390) 310 (EC50) (230-413)	mg/kg	Е	74	Warne et al. (2008a)
		wheat (Triticum aestivum)	seed	static	soil	20 day; 15 night	Ś	0	plant biomass	21(d)	490 (EC10) (230-1040) 660 (EC20) (385-1140) 1105 (EC50) (800-1515)	mg/kg	E	74	Warne et al. (2008b)
		wheat (Triticum aestivum)	peed	static	soil	20 day; 15 night	Ś		plant biomass	21(d)	465 (EC10) (260-840) 535 (EC20) (350-805) 670 (EC50) (550-820)	mg/kg	E	74	Warne et al. (2008b)

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hq	EC Or (µS/cm) Ca	ganic urbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Copper	Magnolio- phyta	wheat (Triticum aestivum)	peed	static	soil		5.1		3.4 1	olant oiomass	8(w)	144 (EC10) (70-300) 526 (EC50) (335-830)	mg/kg	ш	74	Warne et al. (2008a)
		wheat (<i>Triticum</i> aestivum)	seed	static	soil		5.1		3.4	grain yield	9(m)	787 (EC10) (39-15700) 3170 (EC50) (61-166000)	mg/kg	Ξ	74	Warne et al. (2008a)
		wheat (<i>Triticum</i> aestivum)	seed	static	soil		5.4		0.9	olant oiomass	8(w)	351 (EC10) (0.02-6x10 ⁶) 375 (EC50) (141-996)	mg/kg	Ε	74	Warne et al. (2008a)
		wheat (<i>Triticum</i> <i>aestivum</i>)	seed	static	soil		5.4		0.0 3	grain yield	9(m)	132 (EC10) (55-317) 286 (EC50) (196-420)	mg/kg	В	74	Warne et al. (2008a)
		wheat (Triticum aestivum)	seed	static	soil	20 day; 15 night	5.4		1.8 H	olant biomass	21(d)	810 (EC10) (500-1310) 910 (EC20) (640-1290) 1110 (EC50) (945-1310)	mg/kg	E	74	Warne et al. (2008b)
		wheat (Triticum aestivum)	seed	static	soil	20 day; 15 night	5.6		0.0	olant piomass	21(d)	205 (EC10) (6-6820) 215 (EC20) (155-305) 240 (EC50) (0.25-231000)	mg/kg	Е	74	Warne et al. (2008b)

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

erence	ne et al. 18b)	ne et al. 18a)	ne et al. 18a)	ne et al. 18b)	ne et al. 18a)	ne et al. 18a)
Ref	War (200	War (200	War (200	War (200	War (200	War (200
Quality score	74	74	74	74	74	74
Conc type ^b	Е	В	Е	Ξ	Е	Е
Units of toxic conc ^a	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toxic conc & measure of toxicity	885 (EC10) (255-3060) 1050 (EC20) (470-2350) 1405 (EC50) (1070-1840)	1100 (EC10) (900-1330) 1183 (EC50) (1100-1250)	622 (EC10) (207-1870) 1040 (EC50) (634-1710)	930 (EC10) (835-1035) 955 (EC20) (895-1015) 1000 (EC20) (960-1035)	40 (EC10) (11-136) 223 (EC50) (133-375)	586 (EC10) (0.8-434000) 632 (EC50) (92-4310)
Duration	21(d)	8(w)	9(m)	21(d)	8(w)	9(m)
Endpoint	plant biomass	plant biomass	grain yield	plant biomass	plant biomass	grain yield
Organic Carbon (%)	2.9	1.8	1.8	1.9	1.9	1.9
EC (µS/cm)						
Ηd	6	6.3	6.3	6.3	6.3	6.3
Temp (°C)	20 day; 15 night			20 day; 15 night		
Test medium	soil	soil	soil	soil	soil	soil
Mode of Exposure	static	static	static	static	static	static
Life Stage	pees	seed	seed	seed	seed	seed
Species	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (<i>Triticum</i> aestivum)
Division/ phylum	Magnolio- phyta					
Metal	Copper					

	1					
Reference	Warne et al. (2008b)	Warne et al. (2008a)	Warne et al. (2008a)	Warne et al. (2008b)	Warne et al. (2008a)	Warne et al. (2008a)
Quality score	74	74	74	74	74	74
Conc type ^b	Ξ	E	В	E	Ξ	B
Units of toxic	conc ^a mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toxic conc & measure of toxicitv	430 (EC10) (110-1650) 560 (EC20) (215-1470) 870 (EC50) (595-1275)	635 (EC10) (400-1010) 1154 (EC50) (905-1470)	731 (EC10) (300-1780) 5705 (EC50) (640-51200)	945 (EC10) (505-1780) 1020 (EC20) (670-1670) 1280 (EC50) (1065-1530)	3.32 (EC10) (0.003-4130) 2070 (EC50) (234-18300)	1133 (EC10) (261-4900) 1147 (EC50) (60-21700)
Duration	21(d)	8(w)	9(m)	21(d)	8(w)	9(m)
Endpoint	plant biomass	plant biomass	grain yield	plant biomass	plant biomass	grain yield
Organic Carbon (%)		1.4	1.4	1.1	1.1	1.1
EC (μS/cm)						
Hq	6.7	7.3	7.3	7.6	7.6	7.6
Temp (°C)	20 day; 15 night			20 day; 15 night		
Test medium	soil	soil	soil	soil	soil	soil
Mode of Exposure	static	static	static	static	static	static
Life Stage	seed	seed	seed	seed	seed	seed
Species	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)
Division/ phylum	Magnolio- phyta					
Metal	Copper					

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp pl (°C)	H EC (µS/cm	Organic) Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Cone (type ^b)uality score	Reference
Copper	Magnolio- phyta	wheat (Triticum aestivum)	seed	static	soil 2 1	5 night 5 night	6	1.4	plant biomass	21(d)	3300 (EC10) (2700-6700) 4280 (EC20) (1800-6040) 6680 (EC50) (4800-9300)	mg/kg	E	74	Warne et al. (2008b)
Copper	Pterido- phyta	fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ing mix perlite			frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco potti with 10%]	ing mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		fern (Blechnum cartilagineum)	3-4 months with 3-4 fronds	static	Debco potti with 10%]	ing mix perlite			frond dry wt	20(w)	~500 (EC50)	mg/kg	п	48	Kachenko et al. (2007)
		fern (Blechnum cartilagineum)	3-4 months with 3-4 fronds	static	Debco potti with 10%]	ing mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		fern (Blechnum nudum)	3-4 months with 3-4 fronds	static	Debco potti with 10%]	ing mix perlite			frond dry wt	20(w)	50-100 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Blechnum nudum)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ing mix perlite			root dry wt	20(w)	100-500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco potti with 10%]	ing mix perlite			frond dry wt	20(w)	<50 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco potti with 10%]	ing mix perlite			root dry wt	20(w)	<50 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
Land	don	et	al												
------	-----	----	----												

Australasian	metal	toxicity	data – IV
--------------	-------	----------	-----------

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Femp pl (°C)	H EC (µS/cn	Organic 1) Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Copper	Pterido- phyta	fern (Dennstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco potti with 10% J	ng mix perlite			frond dry wt	20(w)	50-100 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		f e rn (Demstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ng mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ng mix perlite			frond dry wt	20(w)	>500 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		fern (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ng mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ng mix perlite			frond dry wt	20(w)	>500 (EC50)	mg/kg	n	48	Kachenko et al. (2007)
		fern (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ng mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Nephrolepis cordifolia)	3-4 months with 3-4 fronds	static	Debco potti with 10% J	ng mix perlite			frond dry wt	20(w)	~500 (EC50)	mg/kg	с	48	Kachenko et al. (2007)
		f e rn (<i>Nephrolepis</i> cordifolia)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ng mix perlite			root dry wt	20(w)	~500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco potti with 10%]	ng mix perlite			frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco potti with 10% ₁	ng mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	и	48	Kachenko et al. (2007)

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hd	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Copper	Pterido- phyta	fern (Pteris vittata)	3-4 months with 3-4 fronds	static	Debco pot with 10%	ting mix perlite				frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fem (Pteris vittata)	3-4 months with 3-4 fronds	static	Debco pot with 10%	ting mix perlite				root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
Copper	Annelida	red earthworm (Eisenia andrei)	adults 300-600 mg	static	soil	20±2	4	14	5.7	mortality	7(d) 14(d) 21(d)	382 (LC50) (317-461) 300 (LC50) (233-388) 299 (LC50) (226-397)	mg/kg	E	16	Vic NBRP Unpublished
		red earthworm (Eisenia andrei)	adults 300-600 mg	static	soil	20±2	4.4	18	1.3	mortality	7(d) 14(d) 21(d)	108 (LC50) (108-109) 108 (LC50) (108-109) 108 (LC50) (108-109)	mg/kg	E	16	NSW NBRP Unpublished
		red earthworm (Eisenia andrei)	adults 300-600 mg	static	soil	20±2	4.4	18	<u>.</u>	mortality	7(d) 14(d) 21(d)	258 (LC50) (244-271) 187 (LC50) (185-190) 179 (LC50) (174-184)	mg/kg	ε	16	NSW NBRP Unpublished
		red earthworm (Eisenia andrei)	adults 300-600 mg	static	soil	20±2	4.6	9	2.6	mortality	7(d) 14(d) 21(d)	>4900 (LC50) 495 (LC50) (262-933) 495 (LC50) (179-1364)	mg/kg	Е	91	WA NBRP Unpublished

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Vol. 15, pp. 51-184, 2009

Division/ Species Life Stage Mode of	Species Life Stage Mode of	Life Stage Mode of	Mode of		Test	Temp	Ηd	EC	Organic	Endpoint	Duration	Toxic conc &	Units	Conc	Quality	Reference
phylum (°C)	Exposure medium (°C)	Exposure medium (°C)	Exposure medium (°C)	medium (°C)	(\mathbf{D})			(ms/cm)	Carbon (%)			measure of toxicity	of toxic conc ^a	type	score	
Annelida red earthworm adults static soil 20 ± 2 4.5 (<i>Eisenia</i> 300-600 mg andrei)	red earthworm adults static soil 20±2 4.5 (<i>Eisenia</i> 300-600 mg <i>andrei</i>)	adults static soil 20±2 4.5 300-600 mg	static soil 20±2 4.9	soil 20±2 4.9	20±2 4.5	4.9		38	3.5	mortality	7(d) 14(d) 21(d)	836 (LC50) (822-850) 654 (LC50) (610-700) 625 (LC50) (578-677)	mg/kg	В	91	NSW NBRP Unpublished
red carthworm adults static soil 20 ± 2 4.5 (<i>Eisenia</i> 300-600 mg andrei)	red earthworm adults static soil 20±2 4.5 (<i>Eisenia</i> 300-600 mg andrei)	adults static soil 20±2 4.5 300-600 mg	static soil 20±2 4.5	soil 20±2 4.9	20±2 4.9	4.	2	38	3.5	mortality	7(d) 14(d) 21(d)	986 (LC50) (757-1286) 388 (LC50) (143-1040) 423 (LC50) (143-1040) (143-1040) (143-1040)	mg/kg	B	16	NSW NBRP Unpublished
Arthro-collembolaadultsstaticacid 20 ± 1 4.5 poda(<i>Proisotoma</i> sandyminuta)ioam	collembola adults static acid 20 ± 1 4.5 (<i>Proisotoma</i> sandy minuta) loam	adults static acid 20±1 4.5 sandy loam	static acid 20±1 4.5 sandy loam	acid 20±1 4.9 sandy loam	20±1 4.9	4.9	•	110.6	1.32	growth	42(d)	150 (NOEC) 300 (LOEC)	mg/kg	ц	76	Nursita et al. (2005)
collembola adults static acid 20±1 4.5 (<i>Proisotoma</i> sandy minuta) loam	collembola adults static acid 20±1 4.5 (<i>Proisotoma</i> sandy minuta) loam	adults static acid 20±1 4.5 sandy loam	static acid 20±1 4.5 sandy loam	acid 20±1 4.9 sandy loam	20±1 4.9	4.9	•	110.6	1.32	reproduc- tion	42(d)	209 (EC10) 696 (EC50)	mg/kg	с	76	Nursita et al. (2005)
collembolaadultsstaticacid 20 ± 1 4.5 (<i>Proisotoma</i> sandy <i>minuta</i>)loam	collembola adults static acid 20±1 4.5 (<i>Proisotoma</i> sandy minuta) loam	adults static acid 20±1 4.5 sandy loam	static acid 20±1 4.5 sandy loam	acid 20±1 4.9 sandy loam	20±1 4.9	4	•	110.6	1.32	survival	42(d)	300 (NOEC) 1500 (LOEC)	mg/kg	ц	76	Nursita et al. (2005)
collembola adults static acid 20±1 4.9 (<i>Proisotoma</i> sandy minuta) loam	collembola adults static acid 20±1 4.9 (<i>Proisotoma</i> sandy ninuta) loam	adults static acid 20±1 4.9 sandy loam	static acid 20±1 4.9 sandy loam	acid 20±1 4.9 sandy loam	20±1 4.9	4.9	-	110.6	1.32	time to 1st young	42(d)	>1500 (NOEC)	mg/kg	ц	76	Nursita et al. (2005)
3acteria nitrifying indigenous static soil 9 microbes	nitrifying indigenous static soil 9 microbes	indigenous static soil 9	static soil 9	9 9	6	6		0.12		nitrification	28(d)	3150 (EC50) (3140-3190) 2590 (EC50) (2580-2610) 1960 (EC50) (1760-2380) 3880 (EC50) (3670-3900)	mg/kg	ц	74	Rusk et al. (2004)

Langdon et al

161

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test T medium (emp pH °C)	EC (µS/cm	Organic 1) Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc (type ^b	Quality score	Reference
Lead	Magnolio- phyta	lettuce (Lactuca sativa)	peed	static	soil	4.7	0.06	-	dry weight	31(d)	4122 (EC50) (3041-5584) 2553 (EC50) (2065-3154)	mg/kg	Ξ	62	Stevens et al. (2003)
		lettuce (Lactuca sativa)	seed	static	soil	.4 8.	0.06	-	dry weight	31(d)	107 (EC50) (80-140) 98 (EC50) (72-133)	mg/kg	В	79	Stevens et al. (2003)
		lettuce (Lactuca sativa)	seed	static	soil	5.1	0.31	-	dry weight	31(d)	659 (EC50) (493-881) 1965 (EC50) (1425-2709)	mg/kg	E	79	Stevens et al. (2003)
		lettuce (Lactuca sativa)	seed	static	soil	6.5	0.55	-	dry weight	31(d)	3194 (EC50) (2590-3931) 1228 (EC50) (749-2012)	mg/kg	Ξ	79	Stevens et al. (2003)
		lettuce (Lactuca sativa)	seed	static	soil	7.8	0.12	-	dry weight	31(d)	960 (EC50) (668-1379) 1092 (EC50) (746-1597)	mg/kg	Ξ	79	Stevens et al. (2003)
Lead	Pterido- phyta	fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ng mix erlite			frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite			root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Blechnum cartilagineum)	3-4 months with 3-4 fronds	static	Debco pottii with 10% p	ıg mix erlite			frond dry wt	20(w)	>500 (EC50)	mg/kg	и	48	Kachenko et al. (2007)

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test T medium (`emp pH (°C)	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Lead	Pterido- phyta	fern (Blechnum cartilagineum)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	oot dry wt	20(w)	>500 (EC50)	mg/kg	u	48	Kachenko e al. (2007)
		fern (Blechnum nudum)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	rond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko e al. (2007)
		f e rn (Blechnum nudum)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	oot dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko e al. (2007)
		fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	rond dry wt	20(w)	~50 (EC50)	mg/kg	ц	48	Kachenko e al. (2007)
		fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	oot dry wt	20(w)	~500 (EC50)	mg/kg	u	48	Kachenko e al. (2007)
		fern (Demstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco pottii with 10% p	ng mix erlite		-	rond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko e al. (2007)
		fern (Dennstaedtia davakkioides)	3-4 months with 3-4 frond	static	Debco pottir with 10% p	ıg mix erlite		-	oot dry wt	20(w)	>500 (EC50)	mg/kg	и	48	Kachenko e al. (2007)
		fern (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco pottii with 10% p	ıg mix erlite		-	rond dry wt	20(w)	>500 (EC50)	mg/kg	E	48	Kachenko e al. (2007)
		fern (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco pottii with 10% p	ıg mix erlite		-	oot dry wt	20(w)	>500 (EC50)	mg/kg	Ц	48	Kachenko e al. (2007)
		fern (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	rond dry wt	20(w)	>500 (EC50)	mg/kg	п	48	Kachenko e al. (2007)

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Kachenko et al. (2007)

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hq	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Lead	Pterido- phyta	fern (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	>500 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
		fern (Nephrolepis cordifolia)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				frond dry wt	20(w)	<50 (EC50)	mg/kg	а	48	Kachenko et al. (2007)
		fern (Nephrolepis cordifolia)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	>500 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
		fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Pteris vittata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite				frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		ferm (Pteris vittata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			• •	root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
Lead	Arthro- poda	collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	growth	42(d)	750 (NOEC) 1500 (LOEC)	mg/kg	ц	76	Nursita et al. (2005)
		collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	survival	42(d)	>3000 (NOEC)	mg/kg	5	76	Nursita et al. (2005)
		collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	time to 1st young	42(d)	>3000 (NOEC)	mg/kg	u	76	Nursita et al. (2005)

	Inecies	Life Stage	Mode of	Test	Temp	Ha	EC	rganic	Endpoint	Duration	Toxic conc &	Units	Cone	Ouality	Reference
		28	Exposure	medium	(°C)		(μs/cm) C	arbon (%)			measure of toxicity	of of toxic conc ^a	type ^b	score	
 io- candelabra 42 day wattle seedlin (Acacia holosericea) 	42 day seedlin	old gs	semi-static	nutrient solution		5		\$ \$	hoot dry veight	70(d)	5.1 (EC10)	μM	E	61	Reichman et al. (2004)
Narrow-leaved 42 day o ironbark seedling (<i>Eucalyptus</i> <i>crebra</i>)	l 42 day e seedling	si	semi-static	nutrient solution		2		~ ~	hoot dry veight	70(d)	5 (EC10)	Μμ	E	61	Reichman et al. (2004)
River redgum 42 day (<i>Eucalyptus</i> seedling <i>camaldulensis</i>)	42 day esedling	old 3S	semi-static	nutrient solution		Ś		s >	hoot dry veight	70(d)	330 (EC10)	Μμ	Е	61	Reichman et al. (2004)
Weeping 42 day c teatree seedling (<i>Melaleuca</i> <i>leucadendra</i>)	42 day c seedling	s, s	semi-static	nutrient solution		S		~ ~	hoot dry veight	70(d)	21 (EC10)	Μų	Ξ	61	Reichman et al. (2004)
wheat 3 day ol (<i>Triticum</i> seedling <i>aestivum</i>) roots 20	3 day ol seedling roots 20	d s; mm	static	0.2 mM solution CaCl ₂	25	4.3		£	oot length	48(h)	211 (EA25) (199-236) 680 (EA50) (613-809)	Мц	Ξ	81	Fortunati et al. (2005)
fern 3-4 mon (Adiantum with 3-4 aethiopicum) fronds	3-4 mon with 3-4 fronds	ths	static	Debco pott with 10%	ing mix perlite			4	rond dry wt	20(w)	~50 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
fern 3-4 mon (<i>Adiantum</i> with 3-4 <i>aethiopicum</i>) fronds	3-4 mon with 3-4 fronds	ths	static	Debco pott with 10%	ing mix perlite			μ.	oot dry wt	20(w)	~100 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
fern 3-4 moi (Blechnum with 3-4 cartilagineum) fronds	3-4 mot with 3-4 fronds	aths 4	static	Debco pott with 10%	ing mix perlite			ц.	rond dry wt	20(w)	50-100 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
fern 3-4 mo (Blechum with 3- cartilagineum) fronds	3-4 mo with 3- fronds	nths 4	static	Debco pott with 10%	ing mix perlite			Ţ	oot dry wt	20(w)	~50 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
fern 3-4 mo (<i>Blechnum</i> with 3- <i>nudum</i>) fronds	3-4 mo with 3- fronds	nths 4	static	Debco pott with 10%	ing mix perlite			5	oot dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)

Metal	Division/	Sneries	Life Stage	Mode of	Test	Temn	H	C Oreani	e Endnoint	Duration	Toxic cone &	l'nits	Conc	Ouality	Reference
	phylum		0	Exposure	medium	(°C)	(hS/	cm) Carboi (%)	u		measure of toxicity	of toxic conc ^a	type ^b	score	
Nickel	Pterido- phyta	fem (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			frond dry wt	20(w)	<50 (EC50)	mg/kg	u	48	Kachenko et al. (2007)
		fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Dennstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			frond dry wt	20(w)	100-500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Demstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fem (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			frond dry wt	20(w)	100-500 (EC50)	mg/kg	с	48	Kachenko et al. (2007)
		fern (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			root dry wt	20(w)	100-500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			root dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Nephrolepis cordifolia)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			frond dry wt	20(w)	~500 (EC50)	mg/kg	E	48	Kachenko et al. (2007)
		fern (Nephrolepis cordifolia)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			root dry wt	20(w)	100-500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Pellaea falcata)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ting mix perlite			frond dry wt	20(w)	>500 (EC50)	mg/kg	E	48	Kachenko et al. (2007)

y Reference	Kachenko et al. (2007)	Kachenko et al. (2007)	Kachenko et al. (2007)	Lyons et al. (2005)	Broos et al. (2007)	Broos et al.					
Qualit score	48	48	48	52	52	52	52	37	37	81	81
Conc type ^b	ц	u	и	u	и	u	ц	и	ц	в	Е
Units of toxic conc ^a	mg/kg	mg/kg	mg/kg	mg/L	mg/L	mg/kg	mg/kg	g/ha	g/ha	mg/kg	mg/kg
Toxic conc & measure of toxicity	>500 (EC50)	>500 (EC50)	>500 (EC50)	11 (EC10) 38 (EC50)	15 (EC10)	2 (NOEC) 4 (LOEC)	2 (NOEC) 4 (LOEC)	>120 (NOEC) >120 (NOEC)	>120 (NOEC) >120 (NOEC)	10 (EC10)	70 (EC10)
Duration	20(w)	20(w)	20(w)	2(d)	2(d)	30(d)	22(d)	NR	NR	28(d)	28(d)
Endpoint	root dry wt	frond dry wt	root dry wt	root length	root length	shoot dry weight	shoot fresh wt	yield	yield	nitrification	nitrification
Organic Carbon (%)										5.6	1.2
EC (µS/cm)								0.05	0.11		
Hq				5.5	5.5	5.5	5.5	6.6	8.6	4	4.4
Temp (°C)	ing mix perlite	ing mix perlite	ing mix perlite	24	24	13-23	10-18			20	20
Test medium	Debco pott with 10%	Debco pott with 10%	Debco pott with 10%	moist filter paper	moist filter paper	Uni of California mix	Uni of California mix	soil	soil	soil	soil
Mode of Exposure	static	static	static	static	static	static	static	static	static	static	static
Life Stage	3-4 months with 3-4 fronds	3-4 months with 3-4 fronds	3-4 months with 3-4 fronds	seed	seed	pre- germinated seeds	pre- germinated seeds	peed	seed	indigenous	indigenous
Species	fern (Pellaea falcata)	fern (Pteris vittata)	fern (Pteris vittata)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	nitrifying microbes	nitrifying microbes
Division/ phylum	Pterido- phyta			Magnolio- phyta	Magnolio- phyta					Bacteria	
Metal	Nickel			Selenium (IV)	Selenium (VI)					Zinc	

Kachenko et al. (2007)

Kachenko et al. (2007)

Kachenko et al. (2007)

Lyons et al. (2005)

Broos et al. (2007)

a species the stage more of test tenp of oc)	Exposure medium (°C)	Exposure medium (°C)	medium (°C)		5.	(mS/cm)	Carbon (%)	Енарони		toxic conc & toxic	of of toxic conc ^a	type ^b	score	
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	4.5		1.4	nitrification	28(d)	63 (EC10)	mg/kg	В	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	4.8		2.6	nitrification	28(d)	188 (EC10)	mg/kg	Е	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	4.9		7	nitrification	28(d)	346 (EC10)	mg/kg	в	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	2		1.8	nitrification	28(d)	270 (EC10)	mg/kg	Е	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	5.1		3.4	nitrification	28(d)	901 (EC10)	mg/kg	В	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	5.4		0.9	nitrification	28(d)	209 (EC10)	mg/kg	В	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	6.3		1.9	nitrification	28(d)	919 (EC10)	mg/kg	В	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	6.3		1.8	nitrification	28(d)	462 (EC10)	mg/kg	в	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	7.3		1.3	nitrification	28(d)	1181 (EC10)	mg/kg	Е	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil	20	7.6		1.2	nitrification	28(d)	7538 (EC10)	mg/kg	Е	81	Broos et al. (2007)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil		6	0.12		nitrification	28(d)	850 (EC50) (850-870)	mg/kg	ц	74	Rusk et al. (2004)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil		6	0.12		nitrification	28(d)	350 (EC50) (270-420)	mg/kg	ц	74	Rusk et al. (2004)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil		6	0.12		nitrification	28(d)	>1000 (EC50)	mg/kg	ц	74	Rusk et al. (2004)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil		6	0.12		nitrification	28(d)	230 (EC50) (160-300)	mg/kg	ц	74	Rusk et al. (2004)
nitrifying indigenous static soil microbes	indigenous static soil	static soil	soil		6	0.12		nitrification	28(d)	650 (EC50) (600-690)	mg/kg	۲	74	Rusk et al. (2004)

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hq	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Zinc	Bacteria	nitrifying microbes	indigenous	static	soil		6	0.12		nitrification	28(d)	210 (EC50) (180-240)	mg/kg	ц	74	Rusk et al. (2004)
		soil microbes	indigenous	static	soil	20	4.4		1.2	respiration rate	6(h)	73 (EC10)	mg/kg	в	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	4.5		1.4	respiration rate	6(h)	369 (EC10)	mg/kg	B	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	4.8		2.6	respiration rate	6(h)	345 (EC10)	mg/kg	в	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	4.9		7	respiration rate	6(h)	462 (EC10)	mg/kg	E	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	5		1.8	respiration rate	6(h)	499 (EC10)	mg/kg	E	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	5.1		3.4	respiration rate	6(h)	281 (EC10)	mg/kg	Е	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	5.4		0.9	respiration rate	6(h)	158 (EC10)	mg/kg	E	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	6.3		1.9	respiration rate	6(h)	25 (EC10)	mg/kg	Е	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	6.3		1.8	respiration rate	6(h)	268 (EC10)	mg/kg	В	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	7.3		1.3	respiration rate	6(h)	187 (EC10)	mg/kg	Е	81	Broos et al. (2007)
		soil microbes	indigenous	static	soil	20	7.6		1.2	respiration rate	6(h)	190 (EC10)	mg/kg	Ш	81	Broos et al. (2007)
Zinc	Magnolio- phyta	barley (<i>Hordeum</i> vulgare)	seed	static	soil		6.3	Γ	1.9	yield	9(m)	490.5 (EC10)	mg/kg	Ξ	74	SA NBRP Unpublished
		barley (<i>Hordeum</i> vulgare)	seed	static	soil		6.7	20	1.8	yield	9(m)	486.7 (EC10)	mg/kg	Ξ	74	SA NBRP Unpublished

Broos et al. (2007)

Broos et al. (2007) Broos et al. (2007)

Broos et al. (2007) Broos et al. (2007)

Broos et al. (2007) Broos et al. (2007)

Broos et al. (2007)

Broos et al. (2007)

SA NBRP Unpublished

SA NBRP Unpublished

Australasian	metal	toxicity	data	- IV

letal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp I (°C)	Hd	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Zine	Magnolio- phyta	barley (Hordeum vulgare)	seed	static	soil		7.6	11	1.1	yield	9(m)	56.4 (EC10)	mg/kg	E	74	SA NBRP Unpublished
		candelabra wattle (Acacia holosericea)	42 day old seedlings	static	nutrient solution	20-45	2			biomass	70(d)	12 (EC10) ~50 (EC50)	Μų	Ξ	62	Reichman et al. (2001)
		Colza (Brassica napus)	seed	static	soil	7	4.6	9	2.6	yield	9(m)	52.3 (EC10)	mg/kg	E	74	WA NBRP Unpublished
		Colza (Brassica napus)	seed	static	soil		5	7	2	yield	9(m)	144.6 (EC10)	mg/kg	Ε	74	Vic NBRP Unpublished
		Colza (Brassica napus)	seed	static	soil	4,	5.6	9	0.0	yield	9(m)	139.1 (EC10)	mg/kg	Ε	74	WA NBRP Unpublished
		Colza (Brassica napus)	seed	static	soil	C	6.7	20	1.8	yield	9(m)	178.8 (EC10)	mg/kg	Ε	74	SA NBRP Unpublished
		Corn (Zea mays)	seed	static	soil	4,	5.4	9	1.8	yield	9(m)	500.5 (EC10)	mg/kg	Е	74	QLD NBRP Unpublished
		Cotton (<i>Gossypium</i> sp.)	seed	static	soil		9.7	10	1.4	yield	9(m)	2128 (EC10)	mg/kg	Ε	74	QLD NBRP Unpublished
		lettuce (Lactuca sativa)	peed	static	soil	7	4.7	0.00		dry weight	31(d)	2 (EC50) (0.54-4.83) 4 (EC50) (1.04-15.1)	mg/kg	E	62	Stevens et al. (2003)
		lettuce (Lactuca sativa)	seed	static	soil	7	4.7	0.06	-	dry weight	31(d)	276 (ECS0) (131-575) 94 (ECS0) (46-190)	mg/kg	ш	62	Stevens et al. (2003)

Division/	Species	Life Stage	Mode of	Test	Temp	Ha	EC	Organic	Endpoint	Duration	Toxic conc &	Units	Cone	Ouality	Reference
ıylum		D	Exposure	medium	(°C)		(mS/cm)	Carbon (%)			measure of toxicity	of toxic conc ^a	type ^b	score	
ıgnolio- ıyta	lettuce (Lactuca sativa)	paas	static	soil		4.8	0.06		dry weight	31(d)	3 (EC50) (2.5-3.8) 10 (EC50) (7.5-14)	mg/kg	Е	62	Stevens et al. (2003)
	lettuce (Lactuca sativa)	peas	static	soil		5.1	0.31		dry weight	31(d)	274 (EC50) (188-399) 75 (EC50) (48-115)	mg/kg	E	79	Stevens et al. (2003)
	lettuce (Lactuca sativa)	peed	static	soil		5.1	0.31		dry weight	31(d)	5 (EC50) (2.74-7.69) 7 (EC50) (4.49-9.77)	mg/kg	Ξ	62	Stevens et al. (2003)
	lettuce (Lactuca sativa)	seed	static	soil		6.5	0.55		dry weight	31(d)	4 (EC50) (1.81-8.33) 8 (EC50) (4.52-15.4)	mg/kg	Е	62	Stevens et al. (2003)
	lettuce (Lactuca sativa)	paas	static	soil		6.5	0.55		dry weight	31(d)	289 (EC50) (144-578) 328 (EC50) (154-696)	mg/kg	Е	62	Stevens et al. (2003)
	lettuce (Lactuca sativa)	paas	static	soil		7.8	0.12		dry weight	31(d)	8 (EC50) (6.47-8.75) 11 (EC50) (9.33-14.1)	mg/kg	Е	62	Stevens et al. (2003)
	lettuce (Lactuca sativa)	pead	static	soil		7.8	0.12		dry weight	31(d)	383 (EC50) (344-425) 266 (EC50) (248-283)	mg/kg	Ξ	62	Stevens et al. (2003)
	peanut (Arachis hypogaea)	seed	static	soil		5.4	9	1.8	yield	9(m)	227.1 (EC10)	mg/kg	Ε	74	QLD NBRP Unpublished
	peanut (Arachis hypogaea)	seed	static	soil		4.5	9	4.	yield	9(m)	16.3 (EC10)	mg/kg	Ε	74	QLD NBRP Unpublished

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hq	EC (µS/cm)	Organic Carbon (%)	Endpoint	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Zinc	Magnolio- phyta	proso millet (<i>Panicum</i> <i>miliaceum</i>)	seed	static	soil		5.4	6	1.8	yield	6(m)	419.1 (EC10)	mg/kg	н	74	QLD NBRP Unpublished
		river redgum (Eucalyptus camaldulensis)	42 day old seedlings	static	nutrient solution	20-45	S			biomass	70(d)	20 (EC10) ~50 (EC50)	Μų	в	62	Reichman et al. (2001)
		sorghum (Sorghum sp.)	seed	static	soil		7.9	10	1.4	yield	9(m)	1661 (EC10)	mg/kg	ш	74	QLD NBRP Unpublished
		sugarcane (Saccharum sp.)	seed	static	soil		4.5	9	1.4	yield	9(m)	780 (EC10)	mg/kg	в	74	QLD NBRP Unpublished
		triticale (<i>Tritosecale</i> sp.)	seed	static	soil		4	14	5.7	yield	9(m)	310.2 (EC10)	mg/kg	в	74	Vic NBRP Unpublished
		Weeping teatree (Melaleuca leucadendra)	42 day old seedlings	static	nutrient solution	20-45	Ś			biomass	70(d)	1.5 (EC10) ~25 (EC50)	Μų	E	62	Reichman et al. (2001)
		wheat (Triticum aestivum)	peed	static	soil	20 day; 15 night	4		5.7	plant biomass	21(d)	875 (EC10) (550-1390) 1000 (EC20) (700-1420) 1265 (EC50) (1050-1520)	mg/kg	Ξ	74	Warne et al. (2008b)
		wheat (Triticum aestivum)	seed	static	soil		4		5.6	grain yield	9(m)	255 (EC10) (50-1280) 702 (EC50) (236-2100)	mg/kg	Ξ	74	Warne et al. (2008a)
		wheat (Triticum aestivum)	peed	static	soil	20 day; 15 night	4.4		1.3	plant biomass	21(d)	250 (EC10) (160-385) 400 (EC20) (290-550) 890 (EC50) (730-1090)	mg/kg	E	74	Warne et al. (2008b)

172

Reference	Warne et al. (2008a)	Warne et al. (2008a)	Warne et al. (2008b)	Warne et al. (2008b)	Warne et al. (2008b)	Warne et al. (2008a)	Warne et al. (2008a)
Quality score	74	74	74	74	74	74	74
Conc type ^b	Е	E	E	Е	E	E	Е
Units of toxic conc ^a	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toxic conc & measure of toxicity	45 (EC10) (8.5-240) 182 (EC50) (75-445)	374 (EC10) (111-1260) 632 (EC50) (330-1200)	235 (EC10) (145-370) 300 (EC20) (215-425) 470 (EC50) (390-570)	335 (EC10) (275-405) 460 (EC20) (400-530)	790 (EC50) (715-880)	52 (EC10) (19-143) 159 (EC50) (110-229)	102 (EC10) (39-268) 363 (EC50) (220-600)
Duration	8(w)	9(m)	21(d)	21(d)	21(d)	8(w)	9(m)
Endpoint	plant biomass	grain yield	biomass	plant biomass	plant biomass	plant biomass	grain yield
Organic Carbon (%)	1.2	1.2	1.	2.6	2.6	2.6	2.6
EC (µS/cm)							
Hd	4.4	4. 4.	4.5	4.6	4.6	4.8	4.8
Temp (°C)			20 day; 15 night	20 day; 15 night	20 day; 15 night		
Test medium	soil	soil	soil	soil	soil	soil	soil
Mode of Exposure	static	static	static	static	static	static	static
Life Stage	seed	seed	seed	seed	seed	seed	seed
Species	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)
Division/ phylum	Magnolio- phyta						
Metal	Zinc						

		÷	÷	÷	÷	÷	-i
	Reference	Warne et a (2008b)	Warne et a (2008a)	Warne et a (2008b)	Warne et a (2008b)	Warne et a (2008a)	Warne et a (2008a)
	Quality score	74	74	74	74	74	74
	Conc type ^b	Е	В	E	E	E	н
	Units of toxic conc ^a	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	 Toxic conc & measure of toxicity 	530 (EC10) (275-1030) 825 (EC20) (510-1335) 1745 (EC50) (1340-2266)	428 (EC10) (205-900) 833 (EC50) (555-1250)	965 (EC10) (730-1280) 1110 (EC20) (895-1380) 1410 (EC50) (1255-1590)	565 (EC10) (380-830) 710 (EC20) (527-950) 1050 (EC50) (840-1300)	244 (EC10) (163-366) 377 (EC50) (307-463)	262 (EC10) (15-655) 389 (EC50) (246-615)
	Duration	21(d)	9(m)	21(d)	21(d)	8(w)	9(m)
	Endpoint	plant biomass	grain yield	plant biomass	plant biomass	plant biomass	grain yield
	Organic Carbon (%)	3.5	2.0	0		1.8	1.8
	EC (µS/cm)						
	hq	4.9	4.9	Ś	Ś	Ś	Ś
	Temp (°C)	20 day; 15 night		20 day; 15 night	20 day; 15 night		
	Test medium	soil	soil	soil	soil	soil	soil
	Mode of Exposure	static	static	static	static	static	static
	Life Stage	seed	seed	seed	seed	seed	seed
	Species	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)
	Division/ phylum	Magnolio- phyta					
	Metal	Zinc					

Vol. 15, pp. 51-184, 2009

Langdon et al

Reference	Warne et al. (2008a)	Warne et al. (2008a)	Warne et al. (2008b)	Warne et al. (2008a)	Warne et al. (2008a)	Warne et al. (2008b)	Warne et al. (2008b)
Quality score	74	74	74	74	74	74	74
Conc type ^b	E	Ε	E	E	E	E	В
Units of toxic	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toxic conc & measure of toxicity	640 (EC10) (370-1110) 1120 (EC50) (795-1580)	1312 (EC10) 1320 (EC50)	505 (EC10) (110-2250) 685 (EC20) (230-2040) 1160 (EC50) (700-1900)	161 (EC10) (54-490) 270 (EC50) (207-354)	91 (EC10) (16-515) 263 (EC50) (170-410)	275 (EC10) (190-390) 275 (EC20) (195-385) 590 (EC50) (455-765)	655 (EC10) (225-1910) 880 (EC20) (400-1950) 1460 (EC50) (830-2570)
Duration	8(w)	9(m)	21(d)	8(w)	9(m)	21(d)	21(d)
Endpoint	plant biomass	grain yield	plant biomass	plant biomass	grain yield	plant biomass	plant biomass
Organic Carbon (%)	3.4	3.4	1.8	0.0	0.9	0.0	2.9
EC (µS/cm)							
Hd	5.1	5.1	5.4	5.4	5.4	5.6	6
Temp (°C)			20 day; 15 night			20 day; 15 night	20 day; 15 night
Test medium	soil	soil	soil	soil	soil	soil	soil
Mode of Exposure	static	static	static	static	static	static	static
Life Stage	seed	seed	seed	seed	seed	seed	seed
Species	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)
Division/ phylum	Magnolio- phyta						
Metal	Zinc						

Langdon et al

175

Reference	Warne et al. (2008b)	Warne et al. (2008a)	Warne et al. (2008a)	Warne et al. (2008a)	Warne et al. (2008a)	Warne et al. (2008b)	Warne et al. (2008a)
Quality score	74	74	74	74	74	74	74
Conc type ^b	Е	E	Ξ	Ξ	E	E	Е
Units of toxic conc ^a	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toxic conc & measure of toxicity	620 (EC10) (400-950) 860 (EC20) (620-1190) 1500 (EC50) (1225-1840)	1210 (EC10) (390-3750) 2123 (EC50) (865-5220)	670 (EC10) (95-5000) 1350 (EC50) (515-3500)	657 (EC10) (267-1615) 1875 (EC50) (1180-2990)	1217 (EC10) (626-2360) 1780 (EC50) (1100-2780)	430 (EC10) (230-820) 615 (EC20) (390-980) 1135 (EC50) (875-1475)	2765 (EC10) (540-14200) 3900 (EC50) (137-108000)
Duration	21(d)	8(w)	9(m)	8(w)	9(m)	21(d)	8(w)
Endpoint	plant biomass	plant biomass	grain yield	plant biomass	grain yield	plant biomass	plant biomass
Organic Carbon (%)	1.9	1.8	1.8	1.9	1.9	1.8	1.4
EC (µS/cm)							
Hd	6.3	6.3	6.3	6.3	6.3	6.7	7.3
Temp (°C)	20 day; 15 night					20 day; 15 night	
Test medium	soil	soil	soil	soil	soil	soil	soil
Mode of Exposure	static	static	static	static	static	static	static
Life Stage	seed	seed	seed	seed	seed	seed	seed
Species	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (<i>Triticum</i> aestivum)	wheat (Triticum aestivum)	wheat (Triticum aestivum)	wheat (<i>Triticum</i> aestivum)
Division/ phylum	Magnolio- phyta						
Metal	Zinc						

Metal	Division/ phylum	Species	Life Stage	Mode of Exposure	Test medium	Temp (°C)	Hd	EC Org (μS/cm) Car (%	anic E bon ()	ndpoint]	Duration	Toxic conc & measure of toxicity	Units of toxic conc ^a	Conc type ^b	Quality score	Reference
Zinc	Magnolio- phyta	wheat (Triticum aestivum)	seed	static	soil		7.3	Ι	.4 gra	in yield	9(m)	2351 (EC10) (1520-3600) 4560 (EC50) (1120-18600)	mg/kg	E	74	Warne et al. (2008a)
		wheat (Triticum aestivum)	seed	static	soil	20 day; 15 night	7.6	-	.1 pla bio	nt mass	21(d)	755 (EC10) (380-1500) 980 (EC20) (595-1610) 1530 (EC50) (1200-1950)	mg/kg	E	74	Warne et al. (2008b)
		whcat (<i>Triticum</i> aestivum)	seed	static	soil		7.6	-	.1 pla bio	nt mass	8(w)	17.2 (EC10) (0.04-7580) 12900 (EC50) (1000- 170000)	mg/kg	Ξ	74	Warne et al. (2008a)
		wheat (<i>Triticum</i> aestivum)	seed	static	soil		7.6	-	.1 gra	in yield	9(m)	4760 (EC10) 4789 (EC50)	mg/kg	Е	74	Warne et al. (2008a)
		wheat (Triticum aestivum)	seed	static	soil	20 day; 15 night	6.7	_	.5 pla bio	nt mass	21(d)	<pre>\$855 (EC10) (4835-7090) (4835-7090) 6140 (EC20) (5700-6620) 6670 (EC50) (5770-7710)</pre>	mg/kg	Ε	74	Warne et al. (2008b)
Zinc	Pterido- phyta	fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ing mix perlite			fro	nd dry wt	20(w)	>500 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ing mix perlite			fro	nd dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Adiantum aethiopicum)	3-4 months with 3-4 fronds	static	Debco pott with 10%	ing mix perlite			roo	t dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)

Langdon et al

177

Metal D	ivision/	Species	Life Stage	Mode of	Test T	emp pl	H EC	Organic	Endpoint	Duration	Toxic conc &	Units	Cone (Quality	Reference
1	phylum			Exposure	medium	(C)	(µS/cn	n) Carbon (%)			measure of toxicity	of toxic conc ^a	type	score	
Zinc P1	terido- chyta	fern (Blechnum cartilagineum)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		ſ	oot dry wt	20(w)	~100 (EC50)	mg/kg	и	48	Kachenko et al. (2007)
		fern (Blechnum nudum)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	frond dry wt	20(w)	~500 (EC50)	mg/kg	E	48	Kachenko et al. (2007)
		fern (Blechnum nudum)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite			oot dry wt	20(w)	>500 (EC50)	mg/kg	E	48	Kachenko et al. (2007)
		fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	frond dry wt	20(w)	~50 (EC50)	mg/kg	E	48	Kachenko et al. (2007)
		fern (Calochlaena dubia)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		Γ	oot dry wt	20(w)	~500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Dennstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	îrond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Dennstaedtia davakkioides)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite			coot dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fern (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	îrond dry wt	20(w)	~500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fem (Doodia aspera)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		Ι	coot dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fèrn (Hypolepis muelleri)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	frond dry wt	20(w)	>500 (EC50)	mg/kg	ц	48	Kachenko et al. (2007)
		fèrn (Hypolepis muellerì)	3-4 months with 3-4 fronds	static	Debco pottir with 10% p	ıg mix erlite		-	oot dry wt	20(w)	>500 (EC50)	mg/kg	۲	48	Kachenko et al. (2007)

AUSTI	RALASIAN JOU	rnal of e	COTOXICO	DLOGY				
Austr	alasian metal	toxicity d	ata – IV					
	Reference	Kachenko et al. (2007)	Vic NBRP Unpublished					
	Quality score	48	48	48	48	48	48	16
	Conc type ^b	ц	ц	и	ц	ц	ц	Ξ
	Units of toxic conc ^a	mg/kg						
	oxic conc & neasure of oxicity	50 (EC50)	50 (EC50)	-500 (EC50)	500 (EC50)	500 (EC50)	500 (EC50	73 (LC50) (367-380) 70 (LC50) (359-382) 51 (LC50)

Units Conc Ouality Reference 91 91 ш Ξ mg/kg mg/kg Endpoint Duration Toxic conc & 473 (LC50) (460-487) 530 (LC50) 263 (LC50) 263 (LC50) 472 (LC50) (463 - 481)263 (LC50) (519-542) V Λ Χ, y, Υ, ŝ ŝ 20(w) 20(w) 20(w) 20(w) 20(w) 20(w) 14(d) 21(d) 21(d) 14(d) 7(d) 14(d) 21(d) (p)_ (p)_ frond dry wt frond dry wt frond dry wt root dry wt root dry wt root dry wt mortality mortality mortality Organic EC Organic (μS/cm) Carbon % Ηd Debco potting mix with 10% perlite Temp (°C) Mode of Test Exposure medium static 3-4 months Life Stage with 3-4 (Nephrolepis Species fem Division/ phylum Pteridophyta Metal Zinc

Vol. 15, pp. 51-184, 2009

NSW NBRP Unpublished

NSW NBRP Unpublished

Metal	Division/ phylum	Species	Lite Stage	Mode of Exposure	medium	(C)		(µS/cm)	Carbon (%)	-		LUXIC CULLE OF measure of toxicity	of of toxic conc ^a	type ^b	score	Velet ence
Zinc	Annelida	red earthworm (Eisenia andrei)	adults 300- 600 mg	static	soil	20+2	4.6	Q	2.6	mortality	7(d) 14(d) 21(d)	863 (LC50) (592-1259) 831 (LC50) (487-1420) 832 (LC50) (473-1462)	mg/kg	E	16	WA NBRP Unpublished
		red earthworm (Eisenia andrei)	adults 300- 600 mg	static	soil	20±2	4.9	38	3.5	mortality	7(d) 14(d) 21(d)	1490 (LC50) (1370-1625) 1410 (LC50) (1342-1480) 1380 (LC50) (1242-1525)	mg/kg	Ξ	91	NSW NBRP Unpublished
		red earthworm (Eisenia andrei)	adults 300- 600 mg	static	soil	20±2	4.9	38	3.5	mortality	7(d) 14(d) 21(d)	852 (LC50) (720-1010) 852 (LC50) (720-1010) 852 (LC50) (720-1010)	mg/kg	E	16	NSW NBRP Unpublished
Zinc	Arthro- poda	collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	growth	42(d)	<200 (NOEC) 200 (LOEC)	mg/kg	E	76	Nursita et al. (2005)
		collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	time to 1st young	42(d)	1000 (NOEC) 2000 (LOEC)	mg/kg	и	76	Nursita et al. (2005)
		collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	reproduc- tion	42(d)	61 (EC10) 283 (EC50)	mg/kg	ц	76	Nursita et al. (2005)
		collembola (<i>Proisotoma</i> <i>minuta</i>)	adults	static	acid sandy loam	20±1	4.9	110.6	1.32	Survival	42(d)	1000 (NOEC) 2000 (LOEC)	mg/kg	и	76	Nursita et al. (2005)

180

REFERENCES

Ahlf W, Drost W and Heise S. 2009. Incorporation of metal bioavailability into regulatory frameworks-metal exposure in water and sediment. *Journal of Soils and Sediments* **9**, 411-419.

Alloway BJ. (Ed). 1995. *Heavy Metals in Soils*, 2nd ed. Blackie Academic and Professional, London, UK.

Amiard JC and Amiard-Triquet C. 1993. Zinc. In *Handbook* of *Hazardous Materials*. Corn MW (Ed), CA Academic Press, San Diego, USA. pp 733-744.

Antunes PMC and Kraeger NJ. 2009. Development of the terrestrial biotic ligand model for predicting nickel toxicity to barley (*Hordeum vulgare*): Ion effects at low pH. *Environmental Toxicology and Chemistry* **28**, 1704-1710.

ANZECC and ARMCANZ. 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT, Australia.

Broos K, Warne MStJ, Heemsbergen DA, Stevens D, Barnes MB, Correll RL and McLaughlin MJ. 2007. Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soils. *Environmental Toxicology and Chemistry* **26**, 583-590.

Camilleri C, Markich SJ, Noller BN, Turley CJ, Parker G and van Dam RA. 2003. Silica reduces the toxicity of aluminium to a tropical freshwater fish (*Mogurnda mogurnda*). *Chemosphere* **50**, 355-364.

Campbell E, Palmer MJ, Shao Q, Wilson D. 2000. *BurrliOZ:* A Computer Program for Calculating Toxicant Trigger Values for the ANZECC and ARMCANZ Water Quality Guidelines. Perth, Western Australia, Australia. Available from http://www.cmis.csiro.au/envir/burrlioz/.

Chapman PM and Riddle MJ. 2005. Toxic effects of contaminants in polar marine environments. *Environmental Science and Technology* **39**, 200A-207A.

Chapman PM, McDonald B, Kickham PE and McKinnon S. 2006. Global geographic differences in marine metals toxicity. *Marine Pollution Bulletin* **52**, 1081-1084.

Charles AL, Markich SJ and Ralph P. 2006. Toxicity of uranium and copper individually, and in combination, to a tropical freshwater macrophyte (*Lemna aequinoctialis*). *Chemosphere* **62**, 1224-1233.

Chen B-C, Chen W-Y and Liao C-M. 2009. A biotic ligand model-based toxicodynamic approach to predict arsenic toxicity to tilapia gills in cultural ponds. *Ecotoxicology* **18**, 377-383.

Clifford M and McGreer JC. 2009. Development of a biotic ligand model for the acute toxicity of zinc to *Daphnia pulex* in soft waters. *Aquatic Toxicology* **91**, 26-32.

Cooper NL, Bidwell JR and Kumar A. 2009. Toxicity of copper, lead, and zinc mixtures to *Ceriodaphnia dubia* and *Daphnia carinata*. *Ecotoxicology and Environmental Safety* **72**, 1523-1528.

Davies PE, Cook LSJ and Goenarso D. 1994. Sublethal responses to pesticides of several species of Australian freshwater fish and crustaceans and rainbow trout. *Environmental Toxicology and Chemistry* **13**, 1341-1354.

Depledge MH, Weeks JM and Bjerregaard P. 1994. Heavy metals. In *Handbook of Ecotoxicology*, Vol. 2, Calow P. (Ed), Blackwell Scientific, London, UK, pp 79-105.

De Schamphelaere KAC, Stauber JL, Wilde KL, Markich SJ, Brown PL, Franklin NM, Creighton NM and Janssen CR. 2005. Toward a biotic ligand model for freshwater green algae: Surface-bound and internal copper are better predictors of toxicity than free Cu²⁺-ion activity when pH is varied. *Environmental Science and Technology* **39**, 2067-2072.

De Vries MP and Tiller KG. 1978. Sewage sludge as a soil amendment, with special reference to Cd, Cu, Mn, Ni, Pb and Zn – comparison of results from experiments conducted inside and outside a glasshouse. *Environmental Pollution* **16**, 231-240.

Duquesne S, Riddle M, Schulz R and Liess M. 2000. Effects of contaminants in the Antarctic environment - potential of the gammarid amphipod crustacean *Paramorea walkeri* as a biological indicator for Antarctic ecosystems based on toxicity and bioaccumulation of copper and cadmium. *Aquatic Toxicology* **49**, 131-143.

EC (European Commission). 2008a. European Union Voluntary Risk Assessment Report: Copper, Copper II Sulphate Pentahydrate, Copper(I) Oxide, Copper(II) Oxide, Dicopper Chloride Trihydroxide. CHAPTER 3.2 – Environmental Effects. European Commission, Brussels, Belgium. Available from: http://echa.europa.eu/chem_data/ transit_measures/vrar_en.asp.

EC (European Commission). 2008b. European Union Voluntary Risk Assessment Report: Nickel and Nickel Compounds. Section 3.2 Effects Assessment. European Commission, Brussels, Belgium.

Fortunati P, Lombi E, Hamon RE, Nolan AL and McLaughlin MJ. 2005. Effect of toxic cations on copper rhizotoxicity in wheat seedlings. *Environmental Toxicology and Chemistry* **24**, 372-378.

Franklin NM, Stauber SL, Apte SC and Lim RP. 2002. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. *Environmental Toxicology and Chemistry* **21**, 742-751.

Franklin NM, Stauber JL, Lim RP and Petocz P. 2002. Toxicity of metal mixtures to a tropical freshwater alga (*Chlorella* sp.): The effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. *Environmental Toxicology and Chemistry* **21**, 2412-2422.

Franklin NM, Stauber JL and Lim RP. 2004. Development of multispecies algal bioassays using flow cytometry. *Environmental Toxicology and Chemistry* **23**, 1452-1462.

Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE and Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl, to a freshwater microalga

(*Pseudokirchneriella subcapitata*): The importance of particle solubility. *Environmental Science and Technology* **41**, 8484-8490.

Gale SA, King CK and Hyne RV. 2006. Chronic sublethal sediment toxicity testing using the estuarine amphipod, *Melita plumulosa* (Zeidler): Evaluation using metal-spiked and field-contaminated sediments. *Environmental Toxicology and Chemistry* **25**, 1887-1898

Gorski J and Nugegoda D. 2006. Sublethal toxicity of trace metals to larvae of the blacklip abalone, *Haliotis rubra*. *Environmental Toxicology and Chemistry* **25**, 1360-1367.

Hart BT. 1986. Research Priorities. In *Water Quality Management: Freshwater Ecotoxicity in Australia*, Hart BT (Ed), Chisholm Institute of Technology, Melbourne, Victoria, Australia, pp 135-138.

Heemsbergen DA, Warne MStJ, Broos K, Bell M, Nash D, McLaughlin MJ, Whatmuff M, Barry G, Pritchard D and Penney N. 2009a. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. *Science of the Total Environment* **407**, 2546-2556.

Heemsbergen DA, Warne MStJ, McLaughlin MJ and Kookana R. 2009b. *The Australian Methodology to Derive Ecological Investigation Levels in Contaminated Soils*. CSIRO Land and Water Science Report 43/09, CSIRO, Adelaide, Australia. 88 pp.

Hill NA, King CK, Perrett LA and Johnston EL. 2009. Contaminated suspended sediments toxic to an Antarctic filter feeder: aqueous- and particulate-phase effects. *Environmental Toxicology and Chemistry* **28**, 409-417.

Hobbs DA, Warne MStJ and Markich SJ. 2005. Evaluation of criteria used to assess the quality of aquatic toxicity data. *Integrated Environmental Assessment and Management* **1**, 174-180.

Hogan AC, Stauber JL, Pablo F, Adams MS and Lim RP. 2005a. The development of marine Toxicity Identification Evaluation (TIE) procedures using the unicellular alga *Nitzschia closterium*. *Archives of Environmental Contamination and Toxicology* **48**, 433-443.

Hogan AC, van Dam RA, Markich SJ and Camilleri C. 2005b. Chronic toxicity of uranium to a tropical green alga (*Chlorella* sp.) in natural waters and the influence of dissolved organic carbon. *Aquatic Toxicology* **75**, 343-353.

Hose GC and Van den Brink PJ. 2004. Confirming the species sensitivity distribution concept for endosulfan using laboratory, mesocosm and field data. *Archives of Environmental Contamination and Toxicology* **47**, 511-520.

Hughes R, Reichelt-Brushett AJ and Newman LJ. 2005. Identifying suitable invertebrate species from a unique habitat for ecotoxicology testing. *Australasian Journal of Ecotoxicology* **11**, 85-92.

Hutchins CM, Teasdale PR, Lee SY and Simpson SL. 2008. The influence of small-scale circum-neutral pH change on Cubioavailability and toxicity to an estuarine bivalve (*Austriella* cf *plicifera*) in whole-sediment toxicity tests. *Science of the Total Environment* **405**, 87-95.

Hyne RV, Pablo F, Julli M and Markich SJ. 2005. Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran *Ceriodaphnia* cf *dubia*. *Environmental Toxicology and Chemistry* **24**, 1667-1675.

Johnson HL, Stauber SL, Adams MS and Jolley DF. 2007. Copper and zinc tolerance of two tropical microalgae after copper acclimation. *Environmental Toxicology* **22**, 234-244.

Johnston N, Skidmore J and Thompson GB. 1990. *Applicability of OECD Test Data to Australian Aquatic Species*. A report to the Advisory Committee on Chemicals in the Environment, Australian and New Zealand Environment Council, Canberra, Australia.

Kachenko AG, Singh B and Bhatia NP. 2007. Heavy metal tolerance in common fern species. *Australian Journal of Botany* **55**, 63-73.

Khan S and Nugegoda D. 2007. Sensitivity of juvenile freshwater crayfish *Cherax destructor* (Decapoda: Parastacidae) to trace metals. *Ecotoxicology and Environmental Safety* **68**, 463-469.

King CK and Riddle MJ. 2001. Effects of metal contaminants on the development of the common Antarctic sea urchin *Sterechinus neumayeri* and comparisons of sensitivity with tropical and temperate echinoids. *Marine Ecology Progress Series* **215**, 143-154.

King CK, Dowse MC, Smith SV, Stauber JL and Batley GE. 2004. An assessment of five Australian polychaetes and bivalves for use in whole-sediment toxicity tests: Toxicity and accumulation of copper and zinc from water and sediment. *Archives of Environmental Contamination and Toxicology* **47**, 314-323.

King CK, Gale SA, Hyne RV, Stauber JL, Simpson SL and Hickey CW. 2006a. Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. *Chemosphere* **63**, 1466-1476.

King CK, Gale SA and Stauber JL. 2006b. Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipod *Melita plumulosa*. *Environmental Toxicology* **21**, 489-504.

Kopittke PM and Menzies NW. 2006. Effect of Cu toxicity on growth of cowpea (*Vigna unguiculata*). *Plant and Soil* **279**, 287-296.

Kozlova T, Wood CM and McGreer JC. 2009. The effect of water chemistry on the acute toxicity of nickel to the cladoceran *Daphnia pulex* and the development of a biotic ligand model. *Aquatic Toxicology* **91**, 221-228.

Kwok KWH, Leung KMY, Chu VKH, Lam PKS, Morritt D, Maltby L, Brock TCM, Van den Brink PJ, Warne MStJ and Crane M. 2007. Comparison of tropical and temperate freshwater species sensitivities to chemicals: implications for deriving safe extrapolation factors. *Integrated Environmental Assessment and Management* **3**, 49-67.

LDA (Lead Development Association). 2008. European Union Voluntary Risk Assessment Report: Lead Metal, Lead Oxide, Lead Tetroxide and Lead Stabiliser Compounds. Available from: < http://echa.europa.eu/chem_data/transit_ measures/vrar_en.asp >.

Lehninger AL. 1982. *Principles of Biochemistry*. Worth Publishers, New York, USA.

Leung KMY, Chu KH, Lam PKS and Crane M. 2003. Aquatic ecological risk assessment: Comparison of tropical and temperate species sensitivity to chemicals. In *Solutions to Pollution: Programme Abstract Book, Christchurch, New Zealand, September - October 2003.* The Society of Environmental Toxicology and Chemistry Asia/Pacific - The Australasian Society of Ecotoxicology, Christchurch, New Zealand.

Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK and Jolley DE. 2005. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (*Chlorella* sp. and *Monoraphidium arcuatum*). *Environmental Toxicology and Chemistry* **24**, 2630-2639.

Levy JL, Stauber JL and Jolley DF. 2007. Sensitivity of marine microalgae to copper: The effect of biotic factors on copper adsorption and toxicity. *Science of the Total Environment* **387**, 141-154.

Levy JL, Stauber JL, Wakelin SA and Jolley DF. 2009. The effect of bacteria on the sensitivity of microalgae to copper in laboratory bioassays. *Chemosphere* **74**, 1266-1274.

Li F, Okazaki M and Zhou Q. 2003. Evaluation of Cd uptake by plants estimated from total Cd, pH and organic matter. *Bulletin of Environmental Contamination and Toxicology* **71**, 714-721.

Liess M, Champeau O, Riddle M, Schulz R and Duquesne S. 2001. Combined effects of ultraviolet-B radiation and food shortage on the sensitivity of the Antarctic amphipod *Paramoera walkeri* to copper. *Environmental Toxicology and Chemistry* **20**, 2088-2092.

Lock K, de Schamphelaere KAC, Becaus S, Criel P, Van Eeckhout H and Janssen CR. 2007. Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (*Hordeum vulgare*). *Environmental Pollution* **147**, 626–633.

Luoma SN and Rainbow PS. 2008. *Metal Contamination in Aquatic Environments: Science and Lateral Management*. Cambridge University Press, Cambridge, UK. 573 pp.

Lyons GH, Stangoulis JCR and Graham RD. 2005. Tolerance of wheat (*Triticum aestivum* L.) to high soil and solution selenium levels. *Plant and Soil* **270**, 179-188.

Maltby L, Blake N, Brock TCM and Van den Brink PJ. 2003. Addressing Interspecific Variation in Sensitivity and the Potential to Reduce this Source of Uncertainty in Ecotoxicological Assessments. Science and Research Report PN0932. Department for Environment, Food and Rural Affairs (DEFRA), London, UK. Available at http://randd. defra.gov.uk/Default.aspx?Menu=Menu&Module=More& Location=None&Completed=0&ProjectID=9596 Maltby L, Blake N, Brock TCM and Van den Brink PJ. 2005. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. *Environmental Toxicology and Chemistry* **24**, 379-288.

Mann RM, Hyne RV, Spadaro DA and Simpson SL. 2009. Development and application of a rapid amphipod reproduction test for sediment-quality assessment. *Environmental Toxicology and Chemistry* **28**, 1244-1254.

Markich SJ. 2003. Influence of body size and gender on valve movement responses of a freshwater bivalve to uranium. *Environmental Toxicology* **18**, 126-136.

Markich SJ and Camilleri C. 1997. *Investigation of Metal Toxicity to Tropical Biota: Recommendations for Revision of the Australian Water Quality Guidelines*. Report Number 127, Supervising Scientist, Canberra, Australia.

Markich SJ and Brown PL. 1999. Thermochemical Data for Environmentally Relevant Elements. 1. Na, K, Ca, Mg, Mn, Fe, Al, U, Cu, Cd, Zn and Pb with Model Fulvic Acid (Aspartate, Citrate, Malonate, Salicylate and Tricarballyate). ANSTO/E735. Australian Nuclear Science and Technology Organisation, Sydney, Australia.

Markich SJ, Brown PL, Batley GE, Apte SC and Stauber JL. 2001. Incorporating metal speciation and bioavailability into water quality guidelines for protecting aquatic ecosystems. *Australasian Journal of Ecotoxicology* **7**, 109-122.

Markich SJ, Warne MStJ, Westbury A and Roberts C. 2002. A compilation of data on the toxicity of chemicals to species in Australasia. Part 3: Metals. *Australasian Journal of Ecotoxicology* **8**, 1-137.

Markich SJ, Brown PL, Jeffree RA, Lim RP. 2003. The effects of pH and dissolved organic carbon on the toxicity of cadmium and copper to a freshwater bivalve: Further support for the extended free ion activity model. *Archives of Environmental Contamination and Toxicology* **45**, 479-491.

Markich SJ, Batley GE, Stauber JL, Rogers NJ, Apte SC, Hyne RV, Bowles KC, Wilde KL and Creighton NM. 2005. Hardness corrections for copper are inappropriate for protecting sensitive freshwater biota. *Chemosphere* **60**, 1-8.

Markich SJ, King AR and Wilson SP. 2006. Non-effect of water hardness on the accumulation and toxicity of copper in a freshwater macrophyte (*Ceratophyllum demersum*): How useful are hardness-modified copper guidelines for protecting freshwater biota? *Chemosphere* **65**, 1791-1800.

McCready S, Greely CR, Hyne RV, Birch GF and Long ER. 2005. Sensitivity of an indigenous amphipod (*Corophium colo*) to chemical contaminants in laboratory toxicity tests conducted with sediments from Sydney Harbor, Australia, and vicinity. *Environmental Toxicology and Chemistry* **24**, 2545-2552.

McLaughlin MJ, Whatmuff M, Warne MStJ, Heemsbergen D, Barry G, Bell M, Nash D and Pritchard D. 2006. A field investigation of solubility and food chain accumulation of biosolid-cadmium across diverse soil types. *Environmental Chemistry* **3**, 428-432.

Langdon et al

Australasian metal toxicity data – IV

Mertens J, Degryse F, Springael D and Smolders E. 2007. Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. *Environmental Science and Technology* **41**, 2992–2997.

Mulhall A. 1997. *Models to Predict the Toxicity of Selected Phenols and Benzamines to a Cladoceran and a Marine Bacterium.* Honours thesis, University of Technology Sydney, Australia. 112 pp.

Nan Z, Zhao C, Li J, Chen F and Sun W. 2002. Relations between soil properties and selected heavy metal concentrations in spring wheat (*Triticum aestivum* L.) grown in contaminated soils. *Water Air and Soil Pollution* **133**, 205-213.

NEPC (National Environment Protection Council) 2011. National Environment Protection (Assessment of Site Contamination) Measure. Schedule B5b – Guideline on Methodology to Derive Ecological Investigation Levels in Contaminated Soils. NEPC, Adelaide, Australia. 87p. Available from: http://www.ephc.gov.au/sites/default/files/ Schedule_B5b__Guideline_on_methodology_to_derive_ EILs__SEP10.pdf

Niyogi S and Wood CM. 2004. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. *Environmental Science and Technology* **38**, 6177-6192.

Nriagu JO. 1990. Global metal pollution: Poisoning the biosphere. *Environment* **32**, 6-11, 28-33.

Nriagu JO. 1994. Industrial activity and metal emissions. In *Industrial Ecology and Global Change*. Socolow R, Andrews C, Berkhout F and Thomas V (Eds), Cambridge University Press, Cambridge, UK. pp 277-285.

Nursita AI, Singh B and Lees E. 2005. The effects of cadmium, copper, lead, and zinc on the growth and reproduction of *Proisotoma minuta* Tullberg (Collembola). *Ecotoxicology and Environmental Safety* **60**, 306-314.

Oorts K, Ghesquiere U, Swinnen K and Smolders E. 2006. Soil properties affecting the toxicity of CuCl₂ and NiCl₂ for soil microbial processes in freshly spiked soils. *Environmental Toxicology and Chemistry* **25**, 836-844.

Orchard SJ, Holdway DA, Barata C and Van Dam RA. 2002. A rapid response toxicity test based on the feeding rate of the tropical cladoceran *Moinodaphnia macleayi*. *Ecotoxicology and Environmental Safety* **53**, 12-19.

Piola RF and Johnston EL. 2006. Differential tolerance to metals among populations of the introduced bryozoan *Bugula neritina*. *Marine Biology* **148**, 997-1010.

Porter EL, Kent RA, Anderson DE, Keenleyside KA, Milne D, Cureton P, Smith SI, Drouillard KG and MacDonald DD. 1995. Development of proposed Canadian environmental quality guidelines for cadmium. *Journal of Geochemical Exploration* **52**, 205-219.

Reichelt-Brushett AJ and Harrison PL. 2000. The effect of copper on the settlement success of larvae from the scleractinian coral *Acropora tenuis*. *Marine Pollution Bulletin* **41**, 385-391.

Reichelt-Brushett AJ and Harrison PL. 2005. The effect of selected trace metals on the fertilization success of several scleractinian coral species. *Coral Reefs* **24**, 524-534.

Reichelt-Brushett AJ and Michalek-Wagner K. 2005. Effects of copper on the fertilization success of the soft coral *Lobophytum compactum*. *Aquatic Toxicology* **74**, 280-284.

Reichman SM, Asher CJ, Mulligan DR and Menzies NW. 2001. Seedling responses of three Australian tree species to toxic concentrations of zinc in solution culture. *Plant and Soil* **235**, 151-158.

Reichman SM, Menzies NW, Asher CJ and Mulligan DR. 2004. Seedling responses of four Australian tree species to toxic concentrations of manganese in solution culture. *Plant and Soil* **258**, 341-350.

Reichman SM, Menzies NW, Asher CJ and Mulligan DR. 2006. Responses of four Australian tree species to toxic concentrations of copper in solution culture. *Journal of Plant Nutrition* **29**, 1127-1141.

Riethmuller N, Markich SJ, van Dam RA and Parry D. 2000. The Effect of True Water Hardness and Alkalinity on the Toxicity of Copper and Uranium to Two Tropical Australian Freshwater Organisms. SSR/155. Supervising Scientist, Canberra, Australia. Available from: <www.deh.gov.au/ssd/ publications/ssr/155.html>.

Riethmuller N, Markich SJ, van Dam RA and Parry D. 2001. Effects of water hardness and alkalinity on the toxicity of uranium to a tropical freshwater hydra (*Hydra viridissima*). *Biomarkers* **6**, 45-51.

Rogers NJ, Apte SC, Knapik A, Davies CM, Bowles KC and Kable SH. 2005. A rapid radiochemical bacterial bioassay to evaluate copper toxicity in freshwaters. *Archives of Environmental Contamination and Toxicology* **49**, 471-479.

Rooney C, Zhao FJ and McGrath SP. 2006. Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. *Environmental Toxicology and Chemistry* **25**, 726-732.

Rose RM, Warne MStJ and Lim RP. 1998. Quantitative structure-activity relationships and volume fraction analysis for nonpolar narcotic chemicals to the Australian cladoceran *Ceriodaphnia* cf. *dubia*. *Archives of Environmental Contamination and Toxicology* **34**, 248-252.

Rusk JA, Hamon RE, Stevens DP and McLaughlin MJ. 2004. Adaptation of soil biological nitrification to heavy metals. *Environmental Science and Technology* **38**, 3092-3097.

Ryan AC, Tomasso JR and Klaine SJ. 2009. Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to *Daphnia magna* in soft waters: Implications for the biotic ligand model. *Environmental Toxicology and Chemistry* **28**, 1663-1670.

Schroer AFW, Belgers JDM, Brock TCM, Matser AM, Maund SJ and Van den Brink PJ. 2004. Comparison of laboratory single species and field population-level effects of

the pyrethroid insecticide lambda-cyhalothrin on freshwater invertebrates. *Archives of Environmental Contamination and Toxicology* **46**, 324-335.

Scott BJ, Ewing MA, Williams R, Humphries AW and Coombes NE. 2008. Tolerance of aluminium toxicity in annual *Medicago* species and lucerne. *Australian Journal of Experimental Agriculture* **48**, 499-511.

Simpson SL. 2005. Exposure-effect model for calculating copper effect concentrations in sediments with varying copper binding properties: A synthesis. *Environmental Science and Technology* **39**, 7089-7096.

Simpson SL and King CK. 2005. Exposure-pathway models explain causality in whole-sediment toxicity tests. *Environmental Science and Technology* **39**, 837-843.

Smolders E, Buekers J, Waegeneers N, Oliver I and McLaughlin MJ. 2003. *Effects of field and laboratory Zn contamination on soil microbial processes and plant growth.* Final report to the International Lead Zinc Research Organization (ILZRO), Katholieke Universiteit Leuven and CSIRO, 67 pp.

Smolders E, Buekers J, Oliver I and McLaughlin MJ. 2004. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. *Environmental Toxicology and Chemistry* **23**, 2633-2640.

Song J, Zhao F-J, McGrath SP and Luo Y-M. 2006. Influence of soil properties and ageing on arsenic phytotoxicity. *Environmental Toxicology and Chemistry* **25**, 1663-1670.

Sorvari J, Warne MStJ, McLaughlin MJ and Kookana R. 2009. Investigation into the Impacts of Contaminants in Mineral Fertilisers, Fertiliser Ingredients and Industrial Residues and the Derivation of Guidelines for Contaminants. CLW Science Report 25/09 prepared for the Primary Industries Ministerial Council and the Environment Protection and Heritage Council. CSIRO, Adelaide, Australia. 213 pp.

Spadaro DA, Micevska T and Simpson SL. 2008. Effect of nutrition on toxicity of contaminants to the epibenthic amphipod *Melita plumulosa*. *Archives of Environmental Contamination and Toxicology* **55**, 593-602.

Steenbergen NTTM, Iaccino F, De Winkel M, Reijnders L and Peijnenburg WJGM. 2005. Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm *Aporrectodea caliginosa*. *Environmental Science and Technology* **39**, 5694-5702.

Stevens DP, McLaughlin MJ and Heinrich T. 2003. Determining toxicity of lead and zinc runoff in soils: Salinity effects on metal partitioning and on phytotoxicity. *Environmental Toxicology and Chemistry* **22**, 3017-3024.

Strom D, Simpson S, Jolley D and Batley G. 2008. Development of robust guidelines for copper contaminated sediments. In 5th SETAC World Congress, Sydney, Australia, 3-7 August, 2008. Congress Abstract CD.

Stumm W and Morgan JJ. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 3rd Edn. John Wiley and Sons, New York, USA. Sunderam RIM, Cheng DMH and Thompson GB. 1992. Toxicity of endosulfan to native and introduced fish in Australia. *Environmental Toxicology and Chemistry* **11**, 1469-1476.

Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao F–J and McGrath SP. 2006a. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. *Environmental Science and Technology* **40**, 7085-7093.

Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao F–J, McGrath SP, Criel P, Van Eeckhout H, Janssen CR, Oorts K and Smolders E. 2006b. Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. *Environmental Science and Technology* **40**, 7094-7100.

Tiller KG, McLaughlin MJ and Roberts AHC. 2000. Environmental impacts of heavy metals in agroecosystems and amelioration strategies in Oceania. In *Soils and Groundwater Pollution and Remediation*, Huang PM and Iskander IK (Eds), Lewis Publishers, Boca Raton, USA, pp 1-41.

USEPA. 1995a. Great Lakes Water Quality Initiative Criteria Documents for the Protection of Aquatic Life in Ambient Water. EPA-820-B-95-004. United States Environment Protection Agency, Washington DC, USA

USEPA. 1995b. Stay of Federal water quality criteria for metals. *Federal Register* **60**, 22228-22237.

USEPA. 2007. Aquatic Life Ambient Freshwater Quality Criteria – Copper. 2007 Revision. US Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington DC, USA. 204 pp. available at: <http://www.epa.gov/waterscience/criteria/aqlife.html>.

Van den Brink PJ, Blake N, Brock TCM and Maltby L. 2006. Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems. *Human and Ecological Risk Assessment* **12**, 645-674.

VLAREBO (Vlaams Reglement Bodemsanering). 2008. *Flemish Soil Remediation Decree* ratified 14 December 2007. Published 22 April 2008.

Warne MStJ. 2001. Derivation of the ANZECC and ARMCANZ water quality guidelines for toxicants. *Australasian Journal of Ecotoxicology* **7**, 123-136.

Warne MStJ and Westbury A-M. 1999. A compilation of data on the toxicity of chemicals to species in Australasia. Part 2: Organic chemicals. *Australasian Journal of Ecotoxicology* **5**, 21-85.

Warne MStJ, Westbury A-M and Sunderam RIM. 1998. A compilation of data on the toxicity of chemicals to species in Australasia. Part 1: Pesticides. *Australasian Journal of Ecotoxicology* **4**, 93-144.

Warne MStJ, McLaughlin MJ, Heemsbergen DA, Bell M, Broos K, Whatmuff M, Barry G, Nash D, Pritchard D, Stevens D, Pu G and Butler C. 2007. *Draft Position Paper Recommendations of the Australian National Biosolids*

Research Program on Biosolids Guidelines. CSIRO, Adelaide, Australia. 24 pp.

Warne MStJ, Heemsbergen DA, McLaughlin MJ, Bell M, Broos K, Whatmuff M, Barry G, Nash D, Pritchard D and Penney N. 2008a. Models for the field-based toxicity of copper and zinc salts to wheat in eleven Australian soils and comparison to laboratory-based models. *Environmental Pollution* **156**, 707-714.

Warne MStJ, Heemsbergen DA, Stevens D, McLaughlin MJ, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D and Penney N. 2008b. Modelling the toxicity of Cu and Zn salts to wheat in fourteen soils. *Environmental Toxicology and Chemistry* **27**, 786-792. Warne MStJ, Heemsbergen DA, McLaughlin MJ and Kookana R. 2009. *Proposed Australian Soil Quality Guidelines for Arsenic, Chromium (III), Copper, DDT, Lead, Naphthalene, Nickel and Zinc.* CSIRO Land and Water Science Report no. 44/09. September 2009. CSIRO, Adelaide, Australia. 192 pp.

Westbury A-M, Warne MStJ and Lim RP. 2004. Toxicity of substituted phenols to *Ceriodaphnia* cf. *dubia* and *Vibrio fischeri* and the development of predictive models. *Australasian Journal of Ecotoxicology* **10**, 33-42.

Wilde KL, Stauber JL, Markich SJ, Franklin NM and Brown PL. 2006. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (*Chlorella* sp.). *Archives of Environmental Contamination and Toxicology* **51**, 174-185.