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abstract
This is the fourth paper in a series that presents data in the Australasian ecotoxicology database. The paper presents all the 
published and unpublished ecotoxicology data for metals that had been generated in Australasia since the initial publication 
of metal ecotoxicology data in 2002. The literature search identified 58 articles that contained relevant ecotoxicology data. In 
total, 1939 new metal ecotoxicology data were added to the database thus increasing the amount of such data by approximately 
80%. A total of 521, 484, 185 and 749 data were added for freshwater, marine/estuarine, sediment and terrestrial environmental 
compartments, respectively. The additional toxicity data will substantially increase the relevance of future environmental 
quality guidelines or hazard and risk assessments to Australasian ecosystems.
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introduction
Metals naturally occur in and are ubiquitous in the 
environment. From an ecotoxicological perspective metals 
can be divided into essential and non-essential metals. 
Essential metals are those that are required by at least some 
organisms for various life processes including enzymatic 
and metabolic reactions (Lehninger 1982). Essential metals 
include antimony (Sb), arsenic (As), chromium (Cr), cobalt 
(Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum 
(Mo), nickel (Ni), tin (Sn), titanium (Ti), vanadium (V) and 
zinc (Zn) (Luoma and Rainbow 2008). Non-essential metals 
have no known biological function and these generally 
include cadmium (Cd), gold (Au), lead (Pb), mercury (Hg), 
palladium (Pd), platinum (Pt), silver (Ag) and uranium (U). 
The concentration response relationships of essential and 
non-essential metals are quite different, having ‘U-shaped’ 
and sigmoidal relationships, respectively. Toxic effects 
can be caused by essential metals concentrations being too 
low and causing deficiency-type effects and then being too 
high and causing toxicity. All metals, whether essential or 
non-essential to an organism, become toxic beyond certain 
threshold concentrations (Depledge et al. 1994). The issue of 
essentiality has not been properly addressed in ecotoxicology 
and in the derivation of environmental quality guidelines. 

As metals occur naturally, they have natural biogeochemical 
cycles which involve the mobilisation of metals from rocks 
into soil and thence transport into waterways, biota and the 
atmosphere. This transport can be local, regional or global in 
nature. The dawn of the Industrial Revolution brought about 
an unprecedented increase in the use of metals in human 
health and welfare, the industrial economy and maintenance 
of national security (Nriagu 1994). Each year, large quantities 
of metal wastes are discharged into the environment so that 

for Pb, Cd, V and Zn, the human inputs are now far greater 
than the global natural sources by 28-, 6-, 3- and 8-fold, 
respectively (Nriagu 1990; Amiard and Amiard-Triquet 
1993). 

Major sources of anthropogenic metallic inputs into 
aquatic environments are domestic and industrial waste 
waters, sewage discharges, urban run-off and atmospheric 
fallout (Nriagu 1990). Furthermore, metal pollution in 
agroecosystems, primarily from the application of fertilisers 
and/or biosolids (i.e., treated sewage sludge) and increasingly 
from the application of industrial residues or by-products 
is of increasing environmental concern (Tiller et al. 2000). 
New guidelines for metal contaminants in biosolids, 
mineral fertilisers and industrial residues have recently been 
developed in Australia (Warne et al. 2007; Sorvari et al. 2009) 
with the aim of managing the potential environmental risks 
associated with metals in these materials. 

Nearly a quarter of a century ago Hart (1986) reviewed the 
research priorities for water quality management and called 
for the establishment of a national ecotoxicology database. 
In 1996, work on the Australasian Ecotoxicology Database 
(AED) commenced. Its development was facilitated by the 
derivation of the 2000 ANZECC and ARMCANZ water 
quality guidelines for toxicants (ANZECC and ARMCANZ 
2000). The aim of establishing the database was to have all 
toxicity data for native and introduced species that had been 
tested under Australasian conditions in one easily accessible 
location (see Warne et al. 1998). It was felt that this would 
facilitate the use of Australasian data in decision-making 
processes such as ecological hazard and risk assessments and 
could be used to guide research by indicating those chemicals 
or species for which more toxicity data are needed. 
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The intent was that the AED would be available in two formats 
– publications in the Australasian Journal of Ecotoxicology 
and an electronic form (i.e., an ACCESS database). Toxicity 
data for pesticides, organic chemicals (excluding pesticides) 
and metals have been collated into the AED and published 
(Warne et al. 1998; Warne and Westbury 1999; and Markich et 
al. 2002, respectively). The current paper presents additional 
toxicity data for metals, including metalloids (As, Se) that 
have been generated and/or published since the previous 
metal AED publication (Markich et al. 2002). Having the 
database available electronically has never been achieved 
due to a lack of funds. However, this has been overcome by 
the current project. The whole AED will shortly be available 
on the CSIRO web-site (to locate it go to the CSIRO web-
site http://www.csiro.au/ and then conduct a search for the 
Australasian Ecotoxicology Database). 

The aims on this project were to: capture and synthesise 
the breadth of research undertaken in the field since the 
previous version of the AED; provide metal toxicity data for 
the forthcoming revision of the Australian and New Zealand 
Guidelines for Fresh and Marine Water Quality (ANZECC 
and ARMCANZ 2000); support life cycle assessment for 
metal and metal products in Australia; and ensure that 
the best-available science is publicly available to support 
transparent and scientifically rigorous policy development.

methods
An extensive literature review was conducted using 
Science Direct (http://www.sciencedirect.com/) and the 
ISI Web of Knowledge (http://apps.isiknowledge.com/
UA_GeneralSearch_input.do?product=UA&search_
m o d e = G e n e r a l S e a r c h & S I D = 4 A l p 8 m @ 3 @
HaIeolIlLo&preferencesSaved=). In addition, scientists 
known to be conducting metal ecotoxicology research 
were directly contacted and asked to supply any published 
or unpublished data. The literature search identified 
approximately 300 articles which met the search key words 
(metal, toxicity, Australasia, Australia, New Zealand). This 
number was reduced to 58 articles which actually contained 
relevant ecotoxicology data. All journal articles as well as 
several project reports that contained metal toxicity data 
(including the metalloids As and Se) for native and introduced 
species tested under Australasian conditions that had been 
published since the previous publication of the AED for 
metals (Markich et al. 2002) or that were not included in the 
previous paper were collected. 

Individual datum points were extracted from each of the 
papers/reports and entered into the database with a unique 
identifier number. Additional information that was entered 
along with each datum point included, the chemical being 
tested, the exposure regime (e.g., static, semi-static or flow-
through), the test duration, the experimental conditions, the 
test species, the test species’ characteristics (e.g., age, sex or 
length), the biological endpoint (e.g., lethality, reproductive 
impairment), the measure of toxicity (e.g., LC50, EC10, 
NOEC) and information on the statistics used. Toxicity data 
that were derived for mixtures of metals were not included 
in the database however they will be discussed in this report. 

Complex mixtures, for example, mine wastes, have not been 
included in the update of the database. Bioaccumulation data 
were also not included. 

In the majority of studies, the toxicity data from each of the 
papers/reports were extracted and entered into the database 
in the form reported by the authors. In some studies not 
all possible measures of toxicity were calculated from the 
available data and therefore such data were analysed and the 
resulting toxicity values (e.g., NOEC, LOEC, EC50 or LC50 
data) included in the AED. In some cases, the toxicity values 
were estimated from graphs provided in the publications/
reports. Where this has been done it has been clearly recorded 
in the database in the section on how the toxicity data were 
calculated. 

All the toxicity data were entered into the AED in the exact 
chemical form used (e.g., CuSO

4
.5H

2
0) but have been 

presented in this paper as the individual metal (e.g., Cu). The 
valency state of the metals is presented when this information 
was presented in the articles/reports. 

The quality of every toxicity datum point was determined 
and was entered into the database to indicate the robustness 
of the methods used to generate the data and therefore the 
reliability of the datum. The quality of each datum was 
determined using a marking scheme that varied slightly for 
aquatic (freshwater - having a salinity ≤ 2.5‰ and marine/
estuarine – salinity > 2.5‰), sediment and terrestrial data 
(see Tables 1, 2 and 3, respectively). The total possible score 
that could be obtained for a datum point depended on the 
test medium used and organism type (e.g., the total possible 
score for aquatic organisms ranged from 88 to 100, Table 1), 
therefore, the quality was expressed as a percentage of the 
total possible score for that particular combination of test 
medium and organism type. Data points with quality scores 
of ≤ 50% were classed as unacceptable (U), 51 to 79% as 
acceptable (A) and ≥ 80% as of high (H) quality. Only data 
classed as H or A are deemed suitable for deriving trigger 
values (TVs) for toxicants in aquatic ecosystems in Australia 
and New Zealand (ANZECC and ARMCANZ 2000) and 
to derive proposed Australian contaminant guidelines for 
biosolids (Warne et al. 2007; Heemsbergen et al. 2009a) 
and ecological investigation levels for contaminated sites 
(Warne et al. 2009). When conducting hazard or ecological 
risk assessments similar scrutiny of the quality of the toxicity 
data is also required, but which quality classifications are 
suitable for a particular purpose will vary with each study.

results and discussion

summary statistics
All the toxicity data points that were entered into the AED 
as part of the current project are presented in Appendices 
A, B, C and D for freshwater, marine/estuarine, sediment 
and terrestrial data, respectively. A summary of all the data 
points entered in the AED for each of the environmental 
compartments (i.e., freshwater, marine/estuarine, sediment 
and terrestrial) as well as the total numbers are provided 
in Table 4. Overall, there were 1939 individual data points 
added to the AED that were obtained from 58 studies. In total, 
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Table 1. Marking scheme used to derive quality scores for aquatic toxicity data (freshwater and marine/estuarine) (from Hobbs et al. 2005).

there were new data for 13 metals and for 87 test species 
that belonged to 14 divisions/phyla. The greatest number of 
data points added was for terrestrial toxicity where 749 data 
points were added to the database representing 31 different 
test species. The number of data points entered for freshwater 
and marine/estuarine was similar with 521 and 484 data points 
added, respectively. However, in terms of the total number of 
species tested within these two environmental compartments, 

there was over double the number of species tested in marine/
estuarine systems than in freshwater and data for nearly 50% 
more divisions/phyla. There was a total of 185 sediment 
toxicity data points added into the AED. The AED previously 
did not contain any sediment toxicity data. 

Overall, the quality of the data, as indicated by the quality 
score, was highly variable with values ranging from 37% for 
a terrestrial data point to 96% for a freshwater data point. 

Vol. 15, pp. 51-184, 2009
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Table 2. Marking scheme used to derive quality scores for sediment toxicity data.

Although the range of quality score values was quite broad, 
the median quality scores did not vary markedly across 
the four environmental compartments. Data points which 
have quality scores < 50% are deemed unacceptable for 
deriving TVs in Australia and New Zealand (ANZECC and 
ARMCANZ 2000), therefore these data points would need 
to be removed from data sets prior to deriving TVs. 

A summary of the composition of all the data points in the 
AED is presented in Table 5. It provides the total number 
of metals, species, divisions/phyla for which unique data 
are available, the number of studies from which data were 
sourced and the number of data points collated. In addition, 

it provides in parentheses the values for each parameter that 
were added in the current project. Thus, while the data in 
Table 4 indicate that freshwater toxicity data were entered 
for nine metals, only one of these was new to the AED (i.e., 
indicated by (1), Table 5). As sediment data had not previously 
been entered into the database, all the data were classed as 
new data, i.e., 13 new test species from four new divisions/
phyla. As there is some overlap between the test species used 
in sediment tests with those used in marine/estuarine tests, 
each new species was only counted once to determine the 
total number of new species added to the database which 
was 41. Overall, the database currently has a total of 4346 
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Table 3. Marking scheme used to derive quality scores for terrestrial toxicity data (from Heemsbergen et al. 2009a).

Table 4. Summary of new metal toxicity data entered into the Australasian Ecotoxicology Database (AED) as presented in Appendices 
A, B, C and D.

a raw toxicity data presented in Appendix A; b raw toxicity data presented in Appendix B; c raw toxicity data presented in Appendix C; d raw 
toxicity data presented in Appendix D; e metals that have multiple oxidation states (As, Se and Cr) were treated as one metal.

Vol. 15, pp. 51-184, 2009
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data points for 22 metals that has been extracted from 263 
studies. Data are currently available for 343 test species from 
19 divisions/phyla. 

metals studied and test species diversity
It is important to assess how comprehensive the data are in 
the AED. Tables 6, 7, 8 and 9 summarise this information 
for freshwater, marine/estuarine, sediment and terrestrial 
compartments, respectively. These tables present for each 
metal, the number of test species that belong to various 
divisions and/or phyla for which toxicity data are present 
in the AED. The numbers shown in parentheses indicate the 
number of species that belong to various divisions and/or 
phyla and were added during the present study. 

Freshwater data
Table 6 shows the 15 individual metals for which there are 
freshwater toxicity data available in the AED (metals with 
multiple oxidation states have been shown separately, but 
were considered to be one metal). The current update included 
data on 9 of the 15 metals and also added data for one new 
metal (iron). There were only five metals, Cd, Cu, Fe, Pb and 
U for which there were toxicity data for new test species. 
There was the inclusion of data for one new freshwater 
division/phylum - cyanobacteria, but these data were only 
for Cu. In addition, over half of the freshwater data points 
that were updated into the AED were for copper (290 data 
points shown in Appendix A). Following Cu, the metals with 
the highest numbers of data points were Zn (85 data), Cd 
(61 data) and U (55 data). This summary of freshwater data 
provided in Table 6 indicates the need to increase test species 
diversity for toxicity testing on freshwater Australasian 
organisms, as well as the need to conduct toxicity testing on 
a broader range of metals. Based on the data shown in Table 
6 there are sufficient acute toxicity data currently available 
in the AED to derive freshwater TVs for As(III), As(V), Cd, 
Cr(VI), Cu, U and Zn*.

Marine/estuarine data
Marine/estuarine toxicity data are available in the AED for a 
total of 14 metals (Table 7) (metals with multiple oxidation 
states have been shown separately, but were considered to be 
one metal). In the current update additional data were added 
for 7 of these 14 metals (Table 4). Toxicity data were added 
for new test species for six metals (Cd, Cu, Fe, Pb, Ni and 

Zn). The most diverse data set of these was for Cu where 
data on an additional 21 test species were added. The next 
most diverse was Zn where data for 15 new test species were 
added. This indicates that the toxicity of metals in the marine/
estuarine compartment is being assessed for a more diverse 
range of marine/estuarine organisms than in the freshwater 
compartment. Similar to the freshwater data, only one new 
division/phylum was added in the marine/estuarine data (ie 
Dinoflagellata) which was again only for Cu. The majority 
of marine/estuarine toxicity data points added to the AED 
was again for Cu (304 data points, Appendix B). This was 
followed by Zn (109 data), Pb (28 data) and Cd (24 data). This 
indicates that although toxicity testing is being conducted on 
a broad range of Australasian marine/estuarine test species, a 
more extensive range of metals needs to be assessed. Based 
on the data summarised in Table 7, there are sufficient acute 
toxicity data available in the AED to derive marine/estuarine 
TVs for Cd, Cr(VI), Cu, Pb, Hg, Ni and Zn*.

Sediment data
The inclusion of sediment toxicity data added an additional 
environmental compartment for which Australasian toxicity 
were available in the database. All of the sediment data added 
were for marine sediments therefore there was considerable 
overlap of the test species used for the sediment and marine/
estuarine data. Compared to the freshwater and marine/
estuarine data sets, the sediment data were only available 
for a limited number of metals (i.e., Cd, Cu, Pb, Ni and 
Zn) with a limited number of test species (i.e., 13) from a 
limited number of divisions/phyla (i.e., 4) indicating that 
a greater understanding of metal toxicity to organisms in 
this test medium is required (Table 8). The majority of 
sediment toxicity data was again for Cu (102 data points 
added, Appendix C), followed by Zn (54 data). Even though 
the sediment toxicity data set is small in comparison to that 
available for the other environmental compartments, there are 
adequate acute toxicity data available for Cu to derive TVs*. 

Terrestrial data
Terrestrial toxicity data are now available in the AED for 
a total of 16 metals (metals with multiple oxidation states 
have been shown separately, but were considered to be one 
metal) (Table 9). As part of the current update, terrestrial 
data were added for one new metal, selenium - as Se(IV) and 
(VI). Toxicity data were also added for two new divisions/

Table 5. Summary of all metal toxicity data in the Australasian Ecotoxicology Database (AED), as presented in Appendices A, B, C and D 
and Markich et al. (2002). Values in parentheses are the number of new (in addition to that already in the AED) metals, species, divisions/
phyla, and studies for which data were added to the AED in the current project and the totals.

a metals that have multiple oxidation states (As, Se and Cr) were treated as one metal.
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* i.e., data from a minimum of five species that belong to at least four taxonomic groups (ANZECC and ARMCANZ 2000; Warne 2001).
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.
phyla for terrestrial organisms, bacteria and 
Pteridophyta. In the case of the bacteria, 
two new functional measures of toxicity, 
substrate-induced respiration and substrate-
induced nitrification, were added for Cu 
and Zn, and data for substrate-induced 
nitrification were added for Pb. The phylum 
Pteridophyta includes fern species, for 
which toxicity data for ten different species 
were added for Cd, Cr(VI), Cu, Pb, Ni 
and Zn. For the remaining divisions/phyla 
presented in Table 9, new species were 
added for Cd, Cu, Pb, Se(IV), Se(VI) and 
Zn. The vast majority of the terrestrial 
toxicity data is for species belonging to 
Magnoliophyta and Pteridophyta, indicating 
that there is a need to obtain toxicity data 
on a broader range of terrestrial phyla. In 
terms of the total number of data added 
for individual metals, similar to the other 
environmental compartments (freshwater, 
marine/estuarine and sediment), there were 
the most data added for Cu (267 data points 
added, Appendix D) followed in order of 
decreasing number of data by Zn (196 
data), aluminium (Al) (164 data) and Pb 
(38 data). Overall, in the AED, there are 
currently sufficient acute data to derive TVs 
for As (V), Cd, Cr(VI), Cu, Pb and Zn for 
the terrestrial environmen*. However, this 
is complicated by the fact that many of the 
terrestrial toxicity data available were not 
determined in soil but instead in aqueous 
media (e.g., hydroponically grown)

acute and chronic toxicity data
Essentially all the metal toxicity data in the 
AED is acute, based on the definition of 
acute in the Australian and New Zealand 
WQGs (ANZECC and ARMCANZ 2000), 
apart from the data for micro-organisms, 
particularly unicellular algae, which are 
predominantly chronic. There is also a 
reasonable amount of early-life stage 
toxicity data which have sometimes been 
classified as sub-chronic and sometimes 
as acute. In the forthcoming revision of 
the Australian and New Zealand WQGs 
the definitions of acute, sub-chronic and 
chronic will need examining. 

Currently the Australian and New Zealand 
WQGs give preference to the use of chronic 
toxicity data to derive TVs (ANZECC and 
ARMCANZ 2000; Warne 2001). There 
was also a stated preference to use data for 
as many species as possible irrespective 
of where the species occur. The reasoning 
was that when TVs are derived using 
the statistically-based species sensitivity 
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* i.e., data from a minimum of five species that belong to at least three taxonomic groups (Heemsbergen et al. 2009b; NEPC 2010).
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distribution methods (e.g., BurrliOZ, 
Campbell et al. 2000), it is best to use 
as many data as possible. Recent work 
on the relative sensitivities of species 
originating from different geographical 
locations indicates that this policy may 
need reconsideration. In addition, recent 
research (Schroer et al. 2004; Maltby 
et al. 2005; Van den Brink et al. 2006;) 
has shown that TVs derived using acute 
toxicity data are protective of species in 
mesocosms and field-based exposure. 
For example, Van den Brink et al. (2006) 
found that for nine herbicides the lower 
95% confidence interval and median 
confidence interval (50%) values based on 
acute toxicity data resulted in values that 
were protective of micro- and mesocosms 
experiencing long-term exposure and a 
short-term or pulse exposure, respectively.

toxicity of mixtures of metals 
There were two studies that determined the 
toxicity of metal mixtures to Australasian 
freshwater organisms, and none for the 
other environmental compartments. The 
two studies assessed the toxic interactions 
of metal mixtures to two freshwater 
crustaceans (Cooper et al. 2009) and 
to the freshwater macrophyte Lemna 
aequinoctialis (duckweed) (Charles et 
al. 2006). 

Cooper et al. (2009) used acute and 
chronic bioassays to observe the effect 
of binary and ternary mixtures of Cu, 
Pd and Zn to Ceriodaphnia dubia and 
Daphnia carinata. Interactions of the 
metal combinations mainly resulted in 
toxicity that conformed with concentration 
addition, however the toxicity was more 
than additive for three of the acute 
scenarios, i.e., both species exposed to 
Cu + Pb, D. carinata exposed to Cu + Zn 
and C. dubia exposed to all three metals 
(Cooper et al. 2009). In comparison, 
Charles et al. (2006) found the joint 
toxicity of Cu and U was less than 
additive using an equitoxic mixture to L. 
aequinoctialis. 

effects of physicochemical 
properties of the environmental 
compartment on speciation, 
bioavailability and toxicity
Metal speciation and hence bioavailability 
and toxicity in all four environmental 
compartments may be strongly influenced 
by a variety of physicochemical parameters 
of the environmental compartment of 
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Table 8. The metals for which there are sediment Australasian ecotoxicology data and a summary of the total number of species belonging 
to different divisions and/or phyla in the Australasian Ecotoxicology Database (AED) for each metal. Values in parentheses are the number 
of new species for which toxicity data were added to the AED in the current project (abstracted from Appendix C). The values in square 
brackets are the total number of species within each division/phylum.

Table 9. The metals for which there are terrestrial (soil or hydroponic) Australasian ecotoxicology data and a summary of the total number 
of species belonging to different divisions and/or phyla in the Australasian Ecotoxicology Database (AED) for each metal. Values in 
parentheses are the number of new species for which toxicity data were added to the AED in the current project (abstracted from Appendix 
D). The values in square brackets are the total number of species within each division/phylum.

concern. For freshwater these include water hardness 
(primarily Ca and/or Mg concentration), alkalinity, pH, 
natural dissolved organic matter and redox potential (Stumm 
and Morgan 1996). The latter two parameters, in addition to 
salinity, are also relevant to marine and estuarine waters. In 
soils it has been known qualitatively, for quite some time, 
that bioavailability and toxicity are affected by a range of soil 
properties including soil pH, clay content, cation exchange 
capacity and organic carbon content (e.g., De Vries and Tiller 
1978; Alloway 1995). 

Although it was known that the above factors could affect 
bioavailability and toxicity of metals in freshwaters, there 

were only a few quantitative relationships between toxicity 
and water hardness that had been reported at the time of the 
release of the current Australian and New Zealand WQGs 
(ANZECC and ARMCANZ 2000). These quantitative 
relationships between metal toxicity and water hardness were 
developed for the Canadian and USA WQGs (Porter et al. 
1995; USEPA 1995a, 1995b). There were insufficient data 
to derive water hardness – toxicity algorithms for Australian 
freshwater organisms (Markich et al. 2002) and therefore the 
North American algorithms were adopted into the Australian 
and New Zealand WQGs (ANZECC and ARMCANZ 2000; 
Markich et al. 2001). Markich and colleagues (Riethmuller 
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et al. 2000; Riethmuller et al. 2001; Markich et al. 2005; 
Markich et al. 2006) in a series of articles argued that the North 
American algorithms had confounded true water hardness 
with alkalinity and/or pH. They then developed true water 
hardness – toxicity algorithms for Cu for a suite of Australian 
freshwater species (including a bacterium, a crustacean, a 
green alga, a hydra, a macroalga and a fish) (Riethmuller 
et al. 2001; Markich et al. 2005; Markich et al. 2006) and 
found that there was no significant change in toxicity with 
true water hardness and therefore using the algorithms in 
the Australian and New Zealand WQGs would not provide 
adequate protection to such organisms. They recommended 
that the hardness correction not be used for Cu and that biotic 
ligand models (BLMs) be used. No recommendations were 
made regarding the validity of the North American hardness 
algorithms for the other metals. Biotic ligand models have 
now been developed for a number of metals including As 
(e.g., Chen et al. 2009), Cu (e.g., Ryan et al. 2009), Ag (e.g., 
Niyogi and Wood 2004), Zn (e.g., Clifford and McGreer 
2009) and Ni (e.g., Kozlova et al. 2009). Research developing 
BLMs in Australia has been extremely limited with only one 
publication (De Schamphelaere et al. 2005) on the toxicity 
of Cu to the green alga Pseudokirchneriella subcapitata 
(previously Selenastrum capricornutum) addressing this 
issue. Despite there being BLMs for a number of metals and 
species, adoption by regulators has been limited. Only the 
BLM for Cu has been adopted to derive WQGs (USEPA 2007) 
while BLMs for chronic toxicity are accepted for use by the 
European Chemical Bureau as part of Existing Substances 
legislation (Ahlf et al. 2009). 

By 2002, when the previous publication on metal toxicity for 
the AED was published, there were no algorithms between 
physicochemical properties of marine/estuarine water and 
toxicity and between soil and toxicity. This situation, to the 
authors’ knowledge, has not changed for the marine/estuarine 
compartment, but a number of such algorithms have been 
developed for the soil compartment. These include algorithms 
that explain the variation in toxicity of As, Cu, Zn and Ni 
to micro-organisms, plants and invertebrates (Rooney et al. 
2006; Smolders et al. 2003; Smolders et al. 2004; Oorts et 
al. 2006; Broos et al. 2007; Song et al. 2006; Warne et al. 
2008a; Warne et al. 2008b) and the uptake of Cd, Cu, Pb and 
Zn by plants (Nan et al. 2002; Li et al. 2003; McLaughlin 
et al. 2006). The Australian National Biosolids Research 
Program (NBRP) developed a number of these algorithms 
that could model the toxicity of Cu and Zn to selected soil 
microbial functions (Broos et al. 2007) and to wheat (both 
laboratory- and field-based) (Warne et al. 2008a; Warne et al. 
2008b) as well as the uptake of Cd by wheat (McLaughlin et 
al. 2006). Many of these algorithms have been incorporated 
into recent environmental regulation and ecological risk 
assessments that include the European Union ecological risk 
assessments of existing chemicals (e.g., EC 2008a; EC 2008b; 
LDA 2008), the Flemish soil quality guidelines (VLAREBO 
2008), the proposed Australian guidelines for Cd, Cu and Zn 
in biosolids (Warne et al. 2007; Heemsbergen et al. 2009b) 
and the proposed Australian ecological investigation levels 
for contaminated sites (Heemsbergen et al. 2009a; Warne et 
al. 2009). To date, there are no similar algorithms for organic 

chemicals in soils, although one would expect that soil pH 
and soil organic carbon content would be dominant soil 
physicochemical properties in such algorithms. 

While the above algorithms have a sound mechanistic basis 
they are in fact empirical. Work has also been conducted 
on developing mechanistic models of toxicity in soils, 
in particular the free ion activity model (FIAM) and the 
terrestrial biotic ligand model (tBLM). The tBLM models 
have generally been found to provide better estimates of 
metal toxicity than the FIAM model (see following BLM 
references). Terrestrial BLMs have been developed for 
Cu and Ni to the collembolan Folsomia candida and the 
earthworm Eisenia fetida (Thakali et al. 2006b), Cu toxicity 
to the earthworm Aporrectodea caliginosa (Steenbergen et 
al. 2005), Zn toxicity to soil microbial nitrification (Mertens 
et al. 2007) and for Cu, Co and Ni to barley (Hordeum 
vulgare) (Thakali et al. 2006a; Lock et al. 2007; Antunes 
and Kraeger 2009). At this stage none of these has been 
adopted by regulators to derive SQGs, rather the empirical 
physicochemical property – toxicity algorithms are being 
adopted.

While sediment toxicity testing is a relatively new field, 
research has been conducted to establish if there are 
relationships between sediment physicochemical properties 
and toxicity. Unpublished work by Strom et al. (2008) has 
found that for Cu toxicity to an amphipod, Melita plumulosa 
and a bivalve, Spisula trigonella, the key factors are particle 
size (i.e., % silt) and the particulate organic carbon content 
(% POC). 

A revision of the Australian and New Zealand WQGs 
commenced in July 2009 and there will need to be 
careful consideration of whether to incorporate the above 
developments into the methodology for deriving the WQGs. 

relative sensitivity of species from different 
geographical locations to toxicants
The current method for deriving WQGs in Australia and 
NZ (ANZECC and ARMCANZ 2000; Warne 2001) uses 
toxicity data irrespective of the geographical distribution of 
the test species. In doing this, it is assumed that species that 
occur in Australasia have the same sensitivity to toxicants 
as non-Australasian species. A number of publications have 
addressed this issue (e.g., Johnston et al. 1990; Sunderam 
et al. 1992; Davies et al. 1994; Mulhall 1997; Markich and 
Camilleri 1997; Rose et al. 1998; Hose and Van den Brink 
2004; Westbury et al. 2004). However, the studies have 
always been too narrowly focussed in terms of chemicals 
and/or species to draw any general conclusions. In addition, 
the findings have often been contradictory with some finding 
differences and others finding no difference in sensitivity. 

Similar concerns have also been raised elsewhere including 
Europe (Maltby et al. 2003), as well as in tropical (Leung et 
al. 2003; Kwok et al. 2007) and polar regions (Chapman and 
Riddle 2005; Chapman et al. 2006). All of these studies apart 
from Maltby et al. (2003), who compared North American 
and European species, found there were differences in the 
sensitivity of organisms from different geographical locations. 
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In particular, Kwok et al. (2007) compared the sensitivity of 
tropical and temperate marine species to a range of inorganic 
and organic chemicals and found that temperate data should 
be divided by an assessment factor of 10 in order to protect 
tropical species. Given the findings of Kwok et al. (2007) 
and Chapman et al. (2006), it is clear that organisms that 
occur in different geographical locations can have different 
sensitivities; this makes it pertinent to resolve the issue of 
whether Australasian and non-Australasian species have the 
same sensitivity to toxicants. 

using the database
While every effort has been made to prevent errors in the 
database, it is possible that some will be present. It is therefore 
advisable that users refer to original data to ensure their 
correctness. 

It would be appreciated that if authors of work cited in this 
report, or users of the database, find errors, they notify the 
principal author. 

There is a considerable amount of toxicity testing being 
conducted but not being published that would be suitable for 
inclusion in the AED – for example consultancies determining 
site-specific trigger values or investigations of contaminated 
sites. We strongly encourage authors of such work to send a 
copy of the report to the principal author. Alternately, if there 
are any issues regarding confidentiality please only send the 
methods that are relevant to the toxicity testing and the results 
of the toxicity testing. Such data would go through the same 
process of data quality assessment as published data and 
would be included in the database and be attributed to the 
authors as unpublished data. 

It is important that users realise that essentially all data 
presented are from laboratory studies and that there are 
difficulties in using such data to estimate effects in the 
field. This is due, amongst other reasons, to the effects of 
differences in chemical speciation, the presence of dissolved 
and suspended particulate matter, the selection of the test 
species and differences in chemical composition of test 
waters (Markich and Brown 1999) and the highly controlled 
experimental conditions and very simple test systems (e.g., 
testing one species in a test container containing only highly 
purified water) used in the laboratory. 

future develoPments
An electronic version of the database will shortly be made 
available on the CSIRO web-site. This will be public domain 
and will permit any user to conduct searches for Australasian 
ecotoxicology data. The retrieved information will be 
exportable to either Word or Excel for further manipulation. 

disclaimer
This document has been prepared in good faith, exercising all 
due care and attention. No representational warranty, express 
or implied, is made as to the accuracy, completeness or fitness 
for purpose of this document in respect of any particular 
user’s circumstances. Users of this document should satisfy 
themselves concerning its applicability to their use, and where 
necessary, refer to the original documents (where possible) 
cited in the database.
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aPPendix a
summary of the metal toxicity data for australasian freshWater biota.
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aPPendix b
summary of the metal toxicity data for australasian marine/estuarine biota.
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aPPendix c
summary of the metal toxicity data for australasian sediment biota.
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aPPendix d
summary of the metal toxicity data for australasian terrestrial biota.
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